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Abstract. A predictive model for seagrass bed coverage (presence/absence at 1-m res-
olution) and ecological attributes of the bed, such as biomass and shoot density, would be
a valuable management tool. But forming such a predictive model is complicated by a
number of factors that strongly influence seagrass bed structure and our interpretation of
its ecological function. The factors include the effects of waves and water depth (hydro-
dynamic setting) and the spatial and temporal scales of the sampling technique itself. In
this study, we examined the coherence of predictions of seagrass cover and ecological
attributes of temperate, mixed-species seagrass derived from two common sampling tech-
niques, (video) line transect (commonly used by biologists) and grid-sampled surveys (often
used in remote sensing). Mapping resolution was held constant at 1 m, and the two tech-
niques applied across seagrass beds of varying coverage that reflected the effect of a
hydrodynamic gradient ranging from patchy, high-energy beds to continuous cover, low-
energy beds. We found that the prediction of seagrass coverage as a function of hydro-
dynamic setting can be improved not only by increasing the spatial extent of sampling at
a fixed resolution (1 m), but also by ensuring that data for both dependent (e.g., percent
cover) and independent (e.g., wave exposure) variables are averaged over similar scales
(spatial extent and resolution). Large-scale features of the landscape, such as patches several
meters in width, appeared to be best quantified by sampling over a large spatial extent, as
with the video transects. Therefore, contiguous sampling over a broad spatial extent, as
opposed to our numerous, somewhat smaller sampling (grid-sampled, 50 3 50 m areas) is
the more appropriate strategy for predicting the probability of seagrass bed cover. Con-
versely, we found that ecological attributes of the seagrass bed (biomass, shoot density,
and sediment composition) were best characterized by sampling over a shorter spatial extent
(i.e., ,50 m), indicating that very localized conditions may have influenced patterns of
seagrass community attributes. Generalizing information about seagrass bed ecological
attributes obtained from high-resolution samples (fine scale) taken over a broad spatial
extent (coarse or landscape scale), as may occur with resource surveys and impact assess-
ments, has the potential to be highly misleading, especially in patchy environments. The
influence of sampling scale and survey method on the prediction of coverage and ecological
attributes of seagrass beds reveals the need to carefully choose sampling designs to evaluate
seagrass distribution and their associated ecological characteristics in the Beaufort, North
Carolina (USA) area, and perhaps in other like habitats.
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INTRODUCTION

The documentation of decreasing seagrass habitat in
many areas worldwide (Cambridge et al. 1986, Robblee
et al. 1991, Quammen and Onuf 1993) has resulted in
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efforts to quantify seagrass spatial distribution over
large geographic areas, from 10 to 104 m. Aerial pho-
tography and, to a lesser degree, in situ mapping of
seagrass distribution has been the focus of monitoring
programs (Dobson et al. 1995) that ultimately seek to
link changes in distribution to changes in ecological
services (e.g., water filtration, nursery habitat) provid-
ed by the seagrass resource. Determining changes in
distribution over time often involves comparing data
collected from slightly different sites, sometimes using
different sampling protocols (e.g., contrast Robbins
and Bell [2000], 1-m resolution using walking surveys,
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with Ferguson and Korfmacher [1997], ;17-m reso-
lution using satellites). Likewise, data on seagrass cov-
erage is often collected at different scales, where scale
can be considered to be composed of both spatial extent
and resolution within that extent and may also be em-
ployed to assess seagrass changes.

The limitations involved in cross-scale comparisons
have alone been shown to be problematic in the field
of ecology and have been the subject of previous stud-
ies (e.g., Rastetter et al. 1992). Cross-scale compari-
sons may be particularly vexing when resource man-
agers utilize results founded upon studies conducted at
fine scales (;1–10 m) to address problems occurring
across coarse, landscape scales (e.g., 10–103 m). Un-
fortunately, comparisons among different sampling
techniques are rarely conducted at the landscape scale.
To our knowledge, there are no comparative studies of
landscape-scale sampling protocols in seagrass eco-
systems. Although some work regarding variation in
plant coverage and ecological functions in seagrass sys-
tems has been examined on landscape scales (Patriquin
1975, Hine et al. 1987, Kirkman and Kuo 1990, Turner
et al. 1999, Robbins and Bell 2000), many more studies
have focused on seagrass bed structure and functions
over areas far less than 100 m2 (Ginsberg and Low-
enstam 1958, Zieman 1972, Orth 1977, Kenworthy et
al. 1982, Fonseca et al. 1983, Valentine et al. 1994,
Irlandi et al. 1995, Irlandi 1996). It is generally not
known whether the results of the fine-scale studies can
be extrapolated to predict characteristics of these hab-
itats (but see Bell et al. 1994 and Turner et al. 1999).
Moreover, we are only beginning to assess the response
of seagrass systems to perturbations at the much larger
scales (Robbins and Bell 1994, Fonseca 1996b, Bell
and Hall 1997, Fonseca et al. 2000b) that are relevant
to management concerns regarding habitat extent and
the ecological services they provide (e.g., such as nurs-
ery role, sediment stability, water column filtration, and
nutrient cycling; Bell et al. 1997).

In order to choose a sampling strategy and predict
seagrass landscape patterns at various spatial scales, it
is important to understand the processes influencing
the expression of those patterns. Physical disturbance
via hydrodynamic activity is widely acknowledged to
have primary influence over the spatial and temporal
dynamics of seagrass beds (see Fonseca 1996a). In hab-
itats exposed to rapidly flowing water, seagrass beds
form patchy, dune-like structures, whereas in quiescent
areas, seagrass beds have low relief and nearly contin-
uous cover (Patriquin 1975, Fonseca et al. 1983, Kirk-
man and Kuo 1990, Marba and Duarte 1995, Fonseca
1996b, Fonseca and Bell 1998). Recently, in North Car-
olina, Fonseca and Bell (1998) demonstrated the ex-
istence of strong correlative relationships between hy-
drodynamic setting (tidal current speed, water depth,
and exposure to waves) and a wide variety of ecological
attributes including seagrass biomass, abundance,
patch geometry, and sediment characteristics. Similar-

ly, in freshwater systems, the relationship between wa-
ter depth, bottom slope, fetch, soil type, disturbance,
and plant community structure has been modeled, also
with the goal of predicting macrophyte growth and dis-
tribution (Narumalani et al. 1997). Both these studies
provide the kinds of data that have been shown to suc-
cessfully describe statistical relationships among en-
vironmental variables that can be scaled up from small
to larger areas for resource conservation planning
(Franklin 1995).

The importance of accurately delineating landscape-
level features in seagrass ecosystems was recently dem-
onstrated by Turner et al. (1999) who found that sea-
grass landscape variables (e.g., fractal dimension and
nearest neighbor distance) and wave exposure together
explained 62.5% of the variance in faunal species abun-
dance among seagrass habitats. Similarly, Fonseca
(1996b) reported that bathymetry in seagrass land-
scapes was scale dependent (i.e., variance in water
depth changed as a function of the distance between
samples) within the 50 3 50 m study areas used by
Fonseca and Bell (1998). Unless scaling limitations of
these data are understood, the degree to which we can
generalize ecological information collected in seagrass
beds will be severely limited. Such predictions cannot
be achieved until the range of scale dependence is es-
tablished and a sampling protocol employed to capture
that scale of spatial variance. It is equally important
for effective management to understand how different
sampling protocols influence these conclusions (e.g.,
whether they satisfy parametric sampling requirements
such as independence among replicates; Fonseca
1996b).

To address these issues of sampling strategy, we ex-
amined whether sampling of seagrass bed cover and
various ecological attributes of these beds, when per-
formed over the same areas and using two common but
different landscape-scale sampling strategies (line tran-
sect vs. grid sampling), might lead to divergent con-
clusions. We also explored ways in which our predic-
tive abilities might be enhanced through the inclusion
of additional physical information into the modeling
process. Specifically, three different problems were in-
vestigated. First, differences between two survey types
(grid-sampled and video transect) were assessed and
the survey data examined for their relation to physical
setting (water depth and wave-driven hydrodynamics)
over varying spatial extent. Second, sampling of sev-
eral ecological attributes was conducted in association
with the two survey types; the relation of these attri-
butes with physical setting was assessed. Finally, an
examination of the potential effect of shoaling on pre-
dictions of seagrass cover and ecological attributes was
conducted on a limited portion of the study area in
order to test its influence on our ability to predict cover
and ecological attributes of the seagrass bed.
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FIG. 1. Regional map of Core and Back Sounds, Carteret
County, North Carolina, USA, showing the location of the
video transects and the 18 previously surveyed 50 3 50 m
grid sample study locations (Fonseca and Bell 1998). Boxes
depict the size and orientation of the geographic-information-
system-derived relative (wave) exposure index (REI) grids
computed for the video transect study (variable box size but
100 3 100 m resolution within). Note that two video transect
sites occur within the same REI box off the southwest corner
of Harker’s Island. The study-area box refers to the Shoaling
effects section. Distributions of marsh and seagrass beds are
from Ferguson et al. (1991).

METHODS

Background

Predictions of seagrass cover in relation to physical
setting were obtained from previously studied (Fonseca
and Bell 1998), 50 3 50 m grids in seagrass beds near
Beaufort, North Carolina, USA surveyed in 1991–1992
(grid-sampled). These previous data were compared
with new seagrass coverage data collected in 1995 from
transect surveys using an underwater video camera
(video transect) over and around several of the same
study sites from 1991 to 1992. The video transect sur-
veys covered distances .1000 m of spatial extent, ne-
cessitating sampling from around, and not just within,
the 50 3 50 m grids. For both data types (grid-sampled
and video transect), resolution was kept the same (1
m) while the spatial extent and geometry of the samples
were different between the two survey methods.

Seagrass cover modeling (1-m resolution over
varying spatial extent)

Site selection.—The seven sites chosen for this study
included six used during previous studies (Bell et al.
1994, Murphey and Fonseca 1995, Fonseca 1996b,

Fonseca and Bell 1998, Townsend and Fonseca 1998).
These sites were spread across ;22 km of the estuary
(Fig. 1) and were chosen to represent the full range of
wave exposure values reported by Fonseca and Bell
(1998). Some sites were not near any emergent shore-
lines and experienced a wave climate that built over a
long (.15 km) fetch (i.e., high energy) (see Plate 1).
At the other extreme, some sites occurred immediately
adjacent to emergent Spartina alterniflora marsh and
had virtually no fetch (i.e., low energy). All sites were
within 10 km of an ocean inlet. Consequently, salinities
ranged between 30 and 34 ppt (on a mass per mass
basis) while annual temperature ranged from ;4 to
338C (NOS/NOAA, Beaufort Laboratory, unpublished
data).

Relative wave exposure index.—Wave exposure for
our sites in southern Core Sound and Back Sound,
North Carolina (348499–348509 N, 768209–768409 W)
were computed using a relative (wave) exposure index
(REI) modified from Keddy (1982). The index was the
same as that performed manually by Murphey and Fon-
seca (1995) and Fonseca and Bell (1998) but was com-
puted here using a macro written in Arc/INFO version
8.0.1 (a geographic information system; Environmental
Systems Research Institute, Redlands, California,
USA) to solve the following equation:

8

REI 5 (V 3 P 3 F ) (1)O i i i
i51

where: i 5 ith compass heading (1–8 [north, northeast,
east, etc.], in 458 increments), V 5 average monthly
maximum wind speed in meters per second, P 5 per-
centage of frequency with which wind occurred from
the ith direction, and F 5 effective fetch in meters.
Wind data were obtained as hourly observations of
speed and direction for the three years preceding each
study period (1991–1992 and 1995) from an NOAA
monitoring station at Cape Lookout, North Carolina, a
site within ;10 km of all our sampling sites. Fetch
was defined as the distance from the site to land along
a given compass heading. Effective fetch was computed
by measuring fetch along four lines radiating out from
either side of the ith compass heading at increments of
11.258, including the ith heading (n 5 9). Effective
fetch was then calculated by summing the product of
the fetch 3 cosine of the angle of departure from the
ith heading over each of the nine lines and dividing by
the sum of the cosine of all the angles. This weighting
of multiple fetch measures for each compass heading
helps account for irregularities in shoreline geometry
that could misrepresent the potential of wind wave de-
velopment from a given compass heading (Shore Pro-
tection Manual 1977).

Video transect data.—Transect locations were cho-
sen to remain within seagrass habitat in and around the
aforementioned sites. This was accomplished by in-
specting recent aerial photographs (L. Wood, National
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PLATE 1. Aerial photograph of the Dredge Island looking north, taken in 1989. The patchy nature of the seagrass beds
is clearly evident around the island. As additional dredged material has been added to the island for the maintenance of the
adjacent channel (running along the northeast side of the island where the vessel wake is visible), the island has created a
wind shadow to the southwest, blocking the high wave energy that is generated from the northeast direction. The seagrass
beds in the lower left of the photo (the southwest side) are no longer patchy but have fully coalesced as they have been
released from the disturbance effects of the northeasterly wave events. Photograph by M. Fonseca.

TABLE 1. Summary statistics of video transect length (in me-
ters) and mean, minimum, and maximum relative (wave) ex-
posure index (REI). Sites were located in Southern Core Sound
and Back Sound, North Carolina, USA, between 348499 N
and 348509 N and between 768209 W and 768409 W.

Site Transect

Video
transect
length

Mean
REI

Minimum
REI

Maximum
REI

BR2
BR2
BR2
DAVIS
DAVIS

1
2
3
1
2

521
427
774
180
207

2.17
2.14
2.11
5.17
5.08

1.81
2.04
1.91
5.09
4.33

2.35
2.35
2.60
5.32
5.32

DAVIS
HlH1
HlH1
HlH1

3
1
2
3

141
935

1307
802

4.57
4.54
4.49
4.28

4.33
2.60
2.88
2.88

5.13
5.67
5.49
5.16

Hl2
Hl2
Hl2

1
2
3

1161
944

1047

4.58
4.73
4.45

3.70
3.69
2.39

6.24
5.44
5.43

HlH2 1 657 4.88 0.09 6.24
HlH2
HlH2
MMN
MMN
MMN
NR1

2
3
1
2
3
1

571
587
317
361
399
725

4.89
4.90
2.66
2.59
2.65
2.73

2.36
0.09
2.51
1.93
2.37
2.56

5.75
6.03
2.75
2.77
2.91
2.96

NR1
NR1

2
3

623
572

2.64
2.70

2.55
2.55

2.77
2.96

Marine Fisheries Service, NOAA, Beaufort, North Car-
olina, USA, personal communication) and previous
seagrass mapping from aerial photography (Ferguson
et al. 1991). At each site, three transects were estab-
lished (Table 1). Sections of the transects sometimes
passed through small portions of Fonseca and Bell’s

(1998) 50 3 50 m grids but at angles oblique to the
original site layout, which, together with a georectifi-
cation accuracy of approximately 62.0 m, precluded
direct, pixel by pixel comparison of the two data sets.

Between June and November 1995, seagrass cov-
erage and water depth data were collected once only
from each transect at the aforementioned seven sites
(Fig. 1). Days with gentle winds near flood tide (low
current speeds) were selected for video towing in order
to ensure good water clarity for video and to minimize
vessel drift; as a consequence, once set on course, tows
appeared to be quite straight.

Two types of data were recorded for each successive
1-m distance along each video transect: (1) presence/
absence of seagrass and (2) water depth (for a summary
of the methods see Table 2). The video data were col-
lected using a Sony 8-mm camcorder (Model CCD
TR30; Sony, SKZ Kisarazu, Japan) in an underwater
housing bolted to a roller trawl (Murphey and Fonseca
1995). The camera was mounted at a 458 angle relative
to the sea floor. The field of view from the camera was
set to be 1 m along the transect 3 0.5 m in width. To
collect water depth data, a Druck model PDCR 10/D
pressure sensor (Druck, New Fairfield, Connecticut,
USA) was also added to the roller trawl at a fixed
distance 39 cm above the seafloor; this height was add-
ed to all depth values. The pressure sensor was con-
nected by a cable to an onboard Campbell Scientific
21 3 Micrologger (Campbell Scientific, Logan, Utah)
that was programmed to collect depth data to the near-
est 0.0001 m at either 5 or 3.3 Hz depending on the
length of the transect and the available data logger



222 MARK FONSECA ET AL. Ecological Applications
Vol. 12, No. 1

TABLE 2. Summary of methods used to model seagrass coverage and ecological attributes.

Data source
Seagrass
coverage

Seagrass coverage

REI
Water depth

(MSL)
Ecological
attributes

Ecological attributes

REI
Water depth

(MSL)

Video transect
data (1995)

Variable length
underwater
video tran-
sects at 1-m
resolution

Arc/INFO
macro grid
at 100 3
100 m reso-
lution

Pressure trans-
ducer on
video sled at
1-m spatial
resolution

Sampled from
within 1-m2

quadrats

Arc/INFO
macro grid
at 100 3
100 m reso-
lution

Direct observa-
tion from
within each
quadrat

Grid-sampled
data (Fonse-
ca and Bell
1998)

Direct observa-
tion of 50 3
50 m grids
at 1-m reso-
lution

Arc/INFO
macro single
value for en-
tire 50 3 50
m grid

Direct observa-
tion at 1-m
spatial reso-
lution

Sampled from
within 1-m2

quadrats

Arc/INFO
macro single
value for en-
tire 50 3 50
m grid

Direct observa-
tion from
within each
quadrat

Notes: REI 5 relative (wave) exposure index; MSL 5 mean sea level.

storage capacity. These data were corrected to mean
sea level (MSL) using NOAA tide models. The entire
video system was weighted and towed slowly (;0.5
m/s) on the seafloor along the transects from a small
motor vessel.

Latitude and longitude of each transect beginning
and end points were collected with a Trimble Pathfinder
5000 GPS Rover (Trimble Navigation, Sunnyvale, Cal-
ifornia, USA). In order to maintain ;2-m accuracy at
each location, at least 180 values were collected with
the position dilution of precision (PDOP) set at 4 and
an elevation mask of 158. Data from a georeferenced
base station located at the Beaufort Laboratory, cali-
brated to collect one position every 5 s, were used to
perform a postmission differential correction of each
of the 180 data points collected per transect endpoint.
These values were then averaged, bringing the Rover
data accuracy for each transect endpoint to within 2 m
of its true position (August et al. 1994).

Each video transect line was broken into successive
points at 1-m increments (point video transect) in Arc/
INFO. In order to assign REI values to each point along
the video transects, a rectangular area that included all
transects at a site was arbitrarily delineated in Arc/
INFO and used to generate a coverage of regularly
spaced points, each centered at 100-m intervals. This
REI grid had a pixel resolution of 3100 m (1 ha).
Relative (wave) exposure index values were then com-
puted for each of the 100 pixels centered over each
grid point. The point video transects were then overlaid
onto the REI grid using Arc/INFO, and the REI value
for that 1-ha area was assigned to each point along the
video transect that fell within the corresponding 1-ha
area. Thus, each point location along the transect be-
came a point sample of REI and seagrass coverage
(presence/absence). All geographic data layers were
projected in the State Plane coordinate system using
the NAD83 datum with units equal to meters.

To obtain seagrass coverage data, the videotape was
examined in the laboratory on a television screen and
the presence or absence of seagrass was recorded for
every successive meter of sea floor along each transect.

Each successive meter of sea floor was viewed and
ranked as ‘‘occupied’’ if .50% of the area was filled
with seagrass after accounting for parallax. There were
very few (estimated ,1%) near-ties using this classi-
fication because of abrupt boundaries between seagrass
and unvegetated seafloor. Because Halodule wrightii
and Zostera marina intermingle at the submeter scale
in this area, no distinction as to species was made dur-
ing mapping. These presence/absence data were then
merged with the MSL-corrected depth data downloaded
from the Campbell data logger to yield a final data set
with observations of REI, presence/absence of seagrass
cover, and MSL water depth for each successive meter
along each transect in Arc/INFO.

Grid data (50 3 50 m grids).—These data were de-
rived from Fonseca and Bell (1998); a brief review of
the methodology follows (see also Table 2). Mapping
to generate the data for Fonseca and Bell (1998) was
conducted four times, in May and November 1991 and
June and November 1992, after selecting the general
location of the study site from 1 : 24 000 aerial pho-
tographs. Mapping of 9 of the original 18 50 3 50 m
sites had continued every spring and fall from 1992 to
spring of 1995, which included six of the seven study
sites surveyed with video in the present study. Because
3 yr had elapsed since the earlier study, we compared
the relationship of seagrass cover to REI from the 1995
spring survey of the 50 3 50 m sites with that per-
formed previously in 1991–1992 to verify that the same
general relationship of cover to REI existed. This last
task was critical to determine if the relationship was
consistent with that of Fonseca and Bell (1998) and
whether direct comparison of the data with the 1995
video transect data would be appropriate.

The actual position and orientation of the 50 3 50
m grids used by Fonseca and Bell (1998) were chosen
haphazardly within portions of the seagrass landscape
that visually appeared to have a consistent pattern of
cover extending well beyond the boundaries of each
study site. Each 50 3 50 m site was broken into a grid
with points centered every 1 m. The 1-m2 area around
each point was visually surveyed for presence/absence
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TABLE 3. Summary of analyses (see Methods) used to process information from various data sources, cross-referenced with
Methods by analysis number.

Analysis
Model parameter(s) and

sampling description REI Water depth (MSL) Analytical method

I Probability of seagrass cover
at 1-m resolution using all
grid-sampled data (50 3
50 m sites)

Arc/INFO macro; single
value for all points in
50 3 50 m grid

Direct observation at
1-m spatial resolution

Logistic multiple re-
gression

II Probability of seagrass cover
at 1-m resolution using
grid-sampled data from
sites with REI . 3.0 3 106

and REI # 3.0 3 106

Arc/INFO macro; single
value for all points in
50 3 50 m grid

Direct observation at
1-m spatial resolution

III Probability of seagrass cover
at 1-m resolution using all
video transect data

Arc/INFO macro; single
value for all points in
100 3 100 m area

Pressure transducer on
video sled at 1-m
spatial resolution

IV Probability of seagrass cover
at 1-m resolution using all
video transect data where
REI . 3.0 3 106 and REI
# 3.0 3 106

Arc/INFO macro; single
value for all points in
100 3 100 m area

Pressure transducer on
video sled at 1-m
spatial resolution

V Probability of seagrass cover
at 1-m resolution using
combined grid-sampled and
video transect data

Combined I and III,
respectively

Combined I and III,
respectively

VI Probability of seagrass cover
at 1-m resolution using
combined grid-sampled and
video transect data where
REI . 3.0 3 106 and REI
# 3.0 3 106

Combined II and IV,
respectively

Combined II and IV,
respectively

VII Percent seagrass cover com-
puted over video transect
segments within REI pixels
and entire 50 3 50 m grid-
sampled areas

Combined I and III,
respectively

n/a Linear regression

VIII Scale dependence of video
transect data, by transect

n/a n/a Semivariogram analysis

IX Ecological attributes of sea-
grass beds along video
transects

Arc/INFO macro; single
value for each quad-
rat

Direct observation with-
in quadrat

Regression, one-way
ANOVA, PCA

X Shoaling effects: probability
of seagrass cover at 1-m
resolution using all video
transect data as well as
video transect data where
REI . 3.0 3 106; ecologi-
cal attributes of seagrass
beds along video transects

Combined I, III, and
VIII

Combined I, III, and
VIII

Combined I and IX

Note: REI 5 relative (wave) exposure index; MSL 5 mean sea level; PCA 5 principal components analysis; n/a 5 not
applicable.

of seagrass using the same criteria as for the video tran-
sects (.50% cover 5 seagrass present). Water depth was
recorded to the nearest decimeter at every 1-m incre-
ment, but only for every third row in the 50 3 50 m
grid, beginning November 1991. Water depth was cor-
rected for tidal change during the course of the survey
as well as the overall relation to MSL using NOAA tide
tables. The coverage observations from each 1-m2 area
were all assigned the same REI value that was computed
from a corner point of the 50 3 50 m grid.

Statistical treatment of coverage and water depth.—
All statistical analyses were performed on data clas-
sified as belonging to areas of either high or low hy-
drodynamic energy (where high 5 REI $ 3 3 106;

Fonseca and Bell 1998) or both high and low combined.
Binary predictive models of seagrass cover (presence/
absence) at 1-m resolution were then computed for both
the high and low energy areas as well as both high and
low combined, but by data type (video transect and
grid-sampled; Analyses I–IV, Table 3), using logistic
multiple regression. The regressions were computed fol-
lowing the method used by Narumalani et al. (1997):

r̂(grass present)

5 p(d 5 1/x)

5 1/(1 1 exp[(B 1 B x 1 B x B x )]) (2)0 1 1 2 2 3 3

where d is the presence (1) or absence (0) of seagrass
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cover at each 1-m increment along the seafloor, x1, x2,
and x3 are time (survey date), REI, and MSL-corrected
water depth, respectively, and B0, B1, B2, and B3 are
coefficients derived from logit regression. Logit re-
gression was performed using SAS (1995) procedure
LOGISTIC. Rank correlations were computed under
SAS (1995) to assess the predictive ability of the mod-
el. An analysis of maximum likelihood estimates (P .
chi-square) was used to determine the significance of
the two independent variables in predicting the con-
tribution of time, REI, and MSL water depth to underṙ
the stepwise logistic multiple regression. The effect of
time was blocked by forcing it into the model. For
Analyses I–VI (Table 3), the SAS procedure computed
Somer’s D, a rank correlation statistic that, like r2, rep-
resents the association of the predicted probabilities vs.
the observed responses.

After comparing the relative sampling effort between
the two data types, it was found that, despite selecting
the same general sites as previously studied, the video
transect and grid-sampled data types tended to sample
different portions of the REI and water depth ranges
(see Results). This was viewed as an opportunity to
explore whether a single model using all available data
could produce a more robust prediction. Therefore, the
two data collections (video transect and grid-sampled)
were concatenated (n 5 43 095). Logistic multiple re-
gression was also applied to this concatenated data set
and again solved for both the entire data set (Analysis
V, Table 3) and high and low energy regimes alone
(Analysis VI, Table 3) for comparison with similar re-
gressions run on the separate video transect and grid-
sampled data collections.

Because REI values were derived from 1-ha pixels
and then assigned to successive 1-m point observations
of coverage (1-m resolution) along the video transects,
the scale of assessment by REI and coverage differed
by two orders of magnitude. Mixing spatial scales
among data types has been reported to sometimes cause
errors in detecting interrelationships among variables
(Rastetter et al. 1992, Schoch and Dethier 1996).
Therefore, percent cover along the video transects was
computed at the same scale as the REI computations
by computing percent cover from using the 1-m2 ob-
servations for the portions of a transect that lie within
each 100 3 100 m REI pixel, yielding one measure of
percent cover per REI datum. This was the same ap-
proach used to calculate a single percent cover value
for each entire grid-sampled (50 3 50 m) site, to which
a single REI value had been assigned. However, video
transects sometimes only crossed a short segment of a
100 3 100 m REI pixel (despite the average distance
within an REI pixel 5 114 m), and on occasion, that
segment encompassed an isolated seagrass patch. As a
result, some of these short transect segments were as-
signed 100% cover values although the percent cover
over the surrounding seafloor at the 100 3 100 m extent
may have been quite low and the REI value, high. To

minimize the effect of these few inflated percent cover
estimates, seven REI categories were created (0–1, .1–
2, .2–3, .3–4, .4–5, .5–6, .6; all 3 106) and the
mean percent cover was computed for each REI cate-
gory within each data type and regressed on REI (Anal-
ysis VII, Table 3).

Semivariogram analysis.—In order to identify the
spatial extent over which scale dependence of coverage
estimates occurred in the video transect survey, se-
mivariogram analysis was performed for all transects
together, by site using the 1-m resolution coverage data.
Data were coded as 0 for no cover and 1 for cover
(GS1 1994; Analysis VIII, Table 3). Data for grid-
sampled sites had previously been analyzed for depth
values; here it was reanalyzed using binary cover val-
ues. The lag value for these computations was set to 1
m. The distance at which variance in seagrass coverage
stabilized on the semivariogram, the sill, was inter-
preted to represent the spatial extent of scale-dependent
changes in seagrass cover (Fonseca 1996b).

Ecological attributes of seagrass beds derived from
point sampling (1 m2)

Video transects.—In spring and fall of 1995, throw-
trap samples were taken along the video transects at
locations near to the midpoint of the transect segment
as it passed through 100 3 100 m REI pixels. A 1-m2

quadrat was thrown onto the nearest vegetated portion
of the seafloor (see Table 2). Above- and belowground
seagrass biomass, seagrass shoot density, and sediment
silt-clay and organic matter content (top 3 cm) were
collected from within these 1-m2 quadrats for a total
of 38 samples per each of two seasons. Temperature,
salinity, and water depth were also recorded at each
quadrat. All sampling gear and processing methods
were the same as previous studies using this sampling
gear (Bell et al. 1994, Fonseca et al. 1996, Fonseca
and Bell 1998).

Grid-sampled.—One square meter quadrats were
also used previously to survey ecological attributes of
the grid-sampled sites (Fonseca and Bell 1998). The
three quadrat samples from each of the 18 50 3 50 m
grids were collected at four dates (June and September,
1991 and 1992), and each random quadrat location was
rejected if it did not land on seagrass. The relationship
of seagrass biomass, shoot density, and sediment char-
acteristics to hydrodynamic setting derived from these
point samples associated with the video transects were
compared with that previously derived from the grid-
sampled sites (Fonseca and Bell 1998).

Data analysis.—In order to assess the relationship
of these ecological attributes with physical setting, the
REI value for each point-sample (quadrat) was assigned
that of the overlying, 1-ha resolution REI pixel, pre-
viously computed for video transects. The three quad-
rats deployed in each of the 50 3 50 m grids were all
assigned the same REI value that was computed using
a corner point of the 50 3 50 m grid (Tables 1 and 2),
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FIG. 2. (a) Dredge Island relative (wave) exposure index
(REI) grid based on a shoreline shape derived from the emer-
gent portion of the island. (b) New REI grid based on a May
1997 survey including subtidal shoals acting as shoreline for
interpreting fetch distances. REI is expressed in thousands
(i.e., 31023). Pixel sizes are 1 ha2.

but these replicate quadrats were averaged, yielding
one attribute observation per REI value in order for
replication to be congruent with the video transect data.
Values for the ecological attributes seagrass shoot den-
sity, aboveground biomass, belowground biomass, and
percentage of organic content of the sediment were all
averaged on a square meter basis, based on three sub-
samples taken within each 50 3 50 m grid.

The relationships among the four ecological attri-
butes and REI were examined after categorization into
either high or low hydrodynamic regime and compared
between the video transect survey and that of Fonseca
and Bell (1998). After natural log 1 1 or arcsine (for
percentage of organic content) transformation, each at-
tribute was regressed (Proc GLM [general linear mod-
el], SAS 1989) on REI by hydrodynamic regime and
data type (grid-sampled, video transect) (Analysis IX,
Table 3). These same ecological attributes were ana-
lyzed under principal components analysis (PCA) after
transformation (ln[value 1 1]; except for data pre-
sented as ratios; SAS 1989) to determine relationships
among ecological attributes (also Analysis IX, Table
3).

Shoaling effects

Because only fetch is used in the computation of
REI, we conducted a test to evaluate the relative im-
portance of including shoaling effects on the REI-based
predictive models. Shoals will act to attenuate wind-
generated waves, meaning that even a site exposed to
a long fetch might not result in high wave exposure if
a shoal existed in close proximity to that site. One of
the seven study areas was selected that featured abrupt
REI gradients (Fig. 2a) and had extensive shoaling
around a small isolated island (Dredge Island). Recent
placement of dredge material on the island had changed
its shoreline configuration as well as adding to the ad-
jacent shoals, which had not been incorporated into the
NOAA shoreline data layer used for the REI compu-
tation. Therefore, the Dredge Island was remapped in
early May 1997 using a Trimble Pro-XL differential
GPS. Thirty-six locations, variably spaced so as to cap-
ture visually obvious geometric variation in the island’s
outline (as viewed onsite) were located with ;1 m
accuracy. This time, the outline of the island was de-
fined to include subtidal shoals to a depth determined
by the shallowest extent of the local seagrass bed
(20.22 m MSL). A new REI grid, which included the
three video transects immediately adjacent to Dredge
Island and which was situated largely in the lee of the
strong northeast fetch, was computed based on the new,
shoal-defined outline of Dredge Island. These new,
shoal-based REI values were merged as before with the
previously surveyed video transects (Fig. 2b). New re-
gressions, PCA, and a logit function were computed
for the data contained in only these three video tran-
sects next to the island (Analysis X, Table 3) and then
compared to the original analyses (Analyses I–IV, Table
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FIG. 3. Comparison of regressions of per-
cent cover on relative (wave) exposure index
(REI, computed in thousands) from Fonseca and
Bell (1998) (dashed line) with spring 1995 sur-
veys of nine representative sites (solid line and
95% confidence limits).

FIG. 4. Depth distribution of seagrass by mean sea level (MSL) water depth (in centimeters) for surveys conducted in
1991–1992 (50 3 50 m grid, G) vs. 1995 (video transect, V). Numbers above bars are the number of 1-m2 observations in
that category.

3). These two groups of analyses were then compared
and qualitatively assessed for the potential importance
of intervening shoals as an influence on REI modeling.

RESULTS

Coherence of the coverage–REI relationship
over time

Percent cover of the 50 3 50 m grid sites resurveyed
in May 1995 was regressed on REI for that sampling
time. This regression produced a relationship similar
to that found at the same sites in 1991–1992 by Fonseca
and Bell (1998; Fig. 3), with cover decreasing with
increasing REI. The most obvious trend was for slightly
greater seagrass cover per unit REI in 1995 than in
1991–1992.

Predicting seagrass cover from video transect
and grid data

Seagrass cover varied with water depth, but the dis-
tribution of sampling effort differed between the video
transect and grid data. The grid-sampled (50 3 50 m
grid) data, which was collected by walking the site,
had sampling effort distributed across a greater range
of depths, but concentrated at shallow areas (Fig. 4).
Video transect data, which were collected using a boat
and ranged far beyond the boundaries of the 50 3 50
m grids, tended to have greater sampling effort in deep-
er areas (Fig. 4). Seagrass cover was greatest between
20.75 and 21.0 m MSL as well as at 0 MSL (Fig. 5),
possibly reflecting the relative depth preferences of the
two seagrass species. It is likely that within this range,
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FIG. 5. Percent cover of seagrass by mean sea level (MSL) water depth (in centimeters) for surveys conducted in 1991–
1992 (50 3 50 m grid, G) vs. 1995 (video transect, V).

FIG. 6. Relative survey effort (percentage of 1-m2 observations) by relative (wave) exposure index (REI) category for
surveys conducted in 1991–1992 (50 3 50 m grid, G) vs. 1995 (video transect, V). Numbers above bars are total numbers
of observations.

the deeper areas would be dominated by a Zostera–
Halodule mix while the shallower sites, particularly
those near 0 MSL, would be dominated almost exclu-
sively by H. wrightii. Video transects ranged also onto
areas of higher REI than that of the grid-sampled sites
(Fig. 6). As might be expected, low REI areas, char-
acterized by more continuous, low relief beds (domi-
nated by H. wrightii), appear to be easily identified by
video transect methods, as evidenced by the very high
r2 value in Table 4. We posit that this relationship exists
simply because a more continuous bed likely has a
higher probability to be detected and recorded by a
transect.

The effect of unequal sampling effort among depths

and REI by each survey method was particularly ap-
parent when comparing percent cover using the seven
REI categories (Analysis VII, Table 3). Grid-sampled
data displayed a significant (P , 0.05) negative cor-
relation of percent cover with REI, whereas the com-
paratively small sample size in low REI sites using the
video transect data apparently resulted in coverage be-
ing underestimated at REI , 3 3 106 REI (Fig. 7a).
When the relationship between percent cover and REI
was examined for only high exposure sites (.3 3 106

REI), the regression lines for the two data types were
similar and exhibited a significant negative correlation
of percent cover with REI (Fig. 7b).

Logistic multiple regression performed over time,
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TABLE 4. Logistic multiple regression for the probability that seagrass cover exists in a given square meter of bottom.

Analysis and description

Regression equations (grass 5 yes) 5 a 1 b 1 c 1 dṙ

a b
Correlation

bc c d Somer’s D

For REI #3 3 106

II. Grid sampling
IV. Video transect
VI. Both

21.18 (9)
2.34 (13)

20.06 (43)

1.21 3 1027 (54)
3.38 3 1026 (20)
9.94 3 1027 (10)

0.14
20.28
20.60

12.25 (32)
8.24 (53)
2.59 (47)

4.29
214.59
20.28

0.529
0.800
0.586

For REI .3 3 106

II. Grid sampling
IV. Video transect
VI. Both

20.45 (0.5)
0.24 (34)
0.42 (22)

27.98 3 1027 (26)
21.34 3 1027 (16)
24.87 3 1027 (14)

0.12
20.19
20.31

4.23 (4)
2.88 (54)
0.92 (8)

4.31
1.99
0.24

0.313
0.547
0.348

Complete data
I. Grid-sampling
III. Video transect
V. Both

0.37 (7)
2.7 3 1025 (30)
0.31 (10)

2.02 3 1027 (25)
21.80 3 1027 (16)
23.42 3 1027 (23)

20.25
20.09
20.13

3.22 (20)
3.14 (52)
1.38 (12)

20.12
0.15
0.32

0.588 (0.279)
0.598 (0.584)
0.372 (0.360)

Case study, Dredge Island
X. Emergent shoreline
X. Shoreline plus sub-

merged shoals

25.01 3 1027 (26)
28.35 3 1027 (54)

0.0424 (77)
0.0404 (73)

7.0868
7.0066

0.633
0.718

Notes: In the regression equations, a 5 survey date, b 5 relative (wave) exposure index (REI), c 5 water depth relative
to mean sea level (MSL), and d 5 intercept. Somer’s D is the rank correlation index. In the columns for a, b, and c, values
in parentheses are the percentages of Somer’s D explained by each independent variable alone; in the Somer’s D column,
the numbers in parentheses resulted from a reanalysis of the data using only values where REI and MSL overlapped between
the two sampling methods (grid-sampling and video transect).

REI, and MSL data (autocorrelation of REI and MSL;
r 5 20.25) revealed that for the complete data set (both
energy regimes combined) prediction strength (Somer’s
D) of seagrass cover by both video transect and grid-
sampled data was almost identical, suggesting that sam-
pling disparities among shallow and deep areas and low
and high REI areas for the two sampling methods had
compensated for each other within the model. However,
within both the high- and low-energy classifications,
video transect-derived models had somewhat greater
prediction strength than grid-sampled data (Table 4).
For each survey method, model prediction strength was
generally greatest in low-energy areas and less in high-
energy areas, the latter being approximately equal to
that of the complete data set (combined high- and low-
energy areas). Overall, there was no obvious pattern as
to whether REI or MSL (and survey date, the effect of
which was blocked by forcing it into the model), ac-
counted for most of the model variance. There was a
tendency for REI to account for more model variance
in grid-sampled sites than in video transect sites; the
opposite was true for MSL that accounted for more
model variance in video transect than grid-sampled
sites. The combined data set of both video transect and
grid data had the lowest D values, whether considered
by or irrespective of energy regime (Table 4).

We reanalyzed the ‘‘complete data’’ for just those
portions of the data where REI and MSL overlapped
between the two sampling methods; D value dropped
in all cases: from 0.588 to 0.279 (grid-sampled), from
0.598 to 0.584 (video transect), and from 0.372 to 0.360
(both). This indicated that the lack of overlap of the
data sets was not adversely affecting prediction
strength and that the grid-sampled prediction actually

depended strongly upon data from the higher REI and
deeper MSL sites that were surveyed. Variation ac-
counted for by survey date may reflect the influence of
the two dominant seagrass species (Z. marina and H.
wrightii) having peak abundances at different times of
the year. But when considered by energy regime, grid-
sampled sites had a positive correlation of REI with
MSL, while video transect sites had a negative corre-
lation, as might be expected with the relative proportion
of sampling effort for these variables between the two
survey methods (see Figs. 4, 6 and 7a, b). When com-
bined, video transect data dominated the sign of the
correlation negative between REI and MSL.

For high energy areas (REI . 3 3 106) the logistic-
based assessment yielded similar trends as simple REI-
based models (Fonseca and Bell 1998); seagrass cov-
erage decreased with increasing REI (Table 4). This is
consistent with the linear regressions of coverage on
REI (Fig. 7b). Low-energy areas (REI , 3 3 106) dis-
played the opposite effect, which again was consistent
with Fig. 7a, in that coverage increased with REI, a
response we attribute to the dominance of shallow wa-
ter sites in that portion of the sampling effort. Similarly,
MSL was positively correlated with coverage in all
cases. To generalize, the combined effects of both water
depth and REI on the probability of seagrass coverage
are shown in Fig. 8, where the probability of cover
declines both as a function of increased REI and in-
creased water depth.

Scale dependence of seagrass cover

In general, a much larger spatial extent of scale de-
pendence for seagrass coverage was detected using the
video transect data than was evidenced using the grid-
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FIG. 7. (a) Percent bottom cover for surveys conducted at 1-m resolution in 1991–1992 (50 3 50 m grid-sampled) vs.
1995 (video transect). All relative wave exposure index (REI) categories are based on midpoints in increments of 1 3 106.
(b) Percent bottom cover for surveys conducted at 1-m resolution in 1991–1992 (50 3 50 m grid-sampled) vs. 1995 (video
transect). All REI categories are based on midpoints in increments of 1 3 106. The regression is for REI value categories
. 3 3 106.

sampled 50 3 50 m data alone. For three of the video
transect data collections, variation in seagrass cover as
a function of distance between samples never stabilized
with spatial extent. Two sites (HIH1 and NRH1) ex-
hibited semivariance stabilization (scale dependence)
in the range of 300–450 m (Fig. 9a). Only two sites
(BR2 and DAVIS) showed signs of reaching scale in-
dependence within the range of the original 50 3 50
m surveys (Fig. 9b; although DAVIS was a new site
and had not been previously surveyed). DAVIS also
had the shortest transect distances of any video transect
sites, only 3–4 times that of the grid-sampled sites.
One site (BR2) was previously found by Fonseca
(1996b) to reach scale independence (using measures
of topography, not cover) at the 18-m extent and ap-
proached scale independence at ;20 m using the cov-
erage data (Fig. 9a). This demonstrates the well-known
linkage of seagrass coverage with topography (sensu
Fonseca et al. 1983). For the grid-sampled data, which
was based on an assessment of 50 3 50 m areas, the

spatial extent over which scale-dependent changes in
seagrass cover occurred as computed by semivariogram
analysis averaged 10.4 m (Fig. 9b, Analysis VIII).

Modeling ecological attributes across
hydrodynamic gradients

Ecological attributes of the seagrass beds, obtained
from the 1-m2 quadrat samples from both grid data (50
3 50 m sites) and video transects were regressed on
REI (Table 5). An already low prediction strength was
lower still for three of four ecological attributes using
data from within the quadrats located on video tran-
sects, as compared to those collected from the 50 3
50 m grids. There was no relationship found for above-
ground biomass with REI using either grid sampling
or video transects (Table 5). In most cases, however,
the slopes of the regression lines among grid-sampled
data and transects were similar although the data spread
was large and prediction strength (r2) was very low.

When correlations were significantly different from
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FIG. 8. Results of logistic multiple regression using combined video transect and grid-sampled data to predict the prob-
ability of seagrass cover (at 1-m resolution) from the relative (wave) exposure index (REI) and water depth (expressed in
meters, relative to mean sea level, MSL).

zero, sediment organic matter (OM) from both grid-
sampled and video transect sources was negatively cor-
related with REI, whereas shoot density and below-
ground biomass were positively correlated (Table 5).
Grid-sampled data displayed the strongest (negative)
correlation with REI, whereas only the video transect
data for REI . 3 3 106, which contained more high-
exposure sites as compared to the grid-sampled sites,
produced a significant but weak (negative) regression
of sediment OM on REI. Similarly, prediction strength
for belowground biomass was lower using video tran-
sect data as compared with grid-sampled data (Table
5). Video transect data displayed no correlation of REI
with either shoot density or aboveground biomass.

Regressions were also computed for the four eco-
logical attributes as a function of corrected water depth
(MSL). Water depth accounted for little variation in
most ecological attributes although in one instance it
displayed a significant correlation with shoot density
(shoot density 5 20.0297 3 MSL 1 8.907; r2 5 0.434,
P , 0.05). When the four ecological attributes were
tested under one-way ANOVA for differences among
high- and low-energy regimes (not shown), the only
significant difference (P , 0.05) was found for shoot
density, which was higher in the high- vs. the low-
energy sites (not shown).

Using principal components analysis (PCA) of the
four dependent variables obtained from quadrats taken
along the video transects, three principal components
had eigenvalues higher than one (Table 6; see also Table
3, Analysis IX), accounting for ;90% of the stan-
dardized variance. The first three principal components
accounted for ;38, 27, and 25% of the standardized
variance, respectively. Seagrass biomass (above- and
belowground) loaded primarily on the first eigenvector,

sediment OM loaded most heavily on the second ei-
genvector, and shoot density loaded best on the third
(Table 6). Classification of sites as high (REI . 3 3
106) and low (REI , 3 3 106) energy regimes indicated
no particular grouping by regime (Fig. 10), a departure
from that reported by Fonseca and Bell (1998) for the
50 3 50 m grid-based data, where strong grouping into
low- and high-REI regimes occurred.

Shoaling effects on prediction of seagrass cover
and ecological attributes

The REI grid around Dredge Island was recomputed
based on new ground-truthing of the shoal areas (Fig.
2b; see also Table 3, Analysis X). The original data
from the three video transects adjacent to the island
were merged with the new REI grid values. Classifi-
cation of percent cover by REI exposure category was
computed using both the original and new REI grid
values, but just for these three transects. Using the
original REI grid, the regression equation calculated
for percent cover and REI was: % cover 5 27.573 3
REI (original) 1 79.12; r2 5 0.55, and using the new
REI grid, the equation was: % cover 5 211.921 3 REI
(new) 1 77.58; r2 5 0.66, a 0.11 increase in r2 and a
steeper regression slope. The regression of sediment
OM on REI data obtained from the three video transects
was not significant using the original REI grid but REI
accounted for ;52% of OM variation using the new
REI grid (not shown).

The logit function was also recomputed using both
the old and new REI grids for these three video tran-
sects (Table 4). By accounting for shoal effects, So-
mer’s D increased from 0.633 to 0.718 and REI could
account for 28% more of the model variance; MSL
consistently accounted for almost 75% of model var-
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FIG. 9. (a) Best-fit semivariogram models of binomial seagrass coverage data, by site, computed using GS1 (1994) on
1-m resolution data, as a function of the total length of the video transect. (b) Best-fit semivariogram models of binomial
seagrass coverage data, by site, computed using GS1 (1994) on 1-m resolution data, as a function of the total area of the
50 3 50 m grids that are common to both the video transect and grid surveys. The Davis site was not sampled in the 1991–
1992 surveys. Horizontal axis (separation distance) is transect distance in meters. Vertical lines (where present) indicate
approximate spatial distance where coverage semivariance stabilized. Note difference in the extent of the separation distances
between (a) and (b).
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TABLE 5. Comparison of regression statistics ( f [relative wave exposure index, REI]) for the four variables common to
quadrat-derived data from both the 50 3 50 m grid study and the present video transect-based study.

Variable (Y) Project name Y 5 mX 1 b N r2

Percentage of organic matter 50 3 50 m grid
50 3 50 m grid, REI .3 3 106

Video transect
Video transect, REI .3 3 106

24.19 3 1027 REI 1 2.738
27.03 3 1028 REI 1 1.264
27.42 3 1028 REI 1 1.631
25.14 3 1027 REI 1 3.781

68
26
73
34

0.37
0.008 ns
0.065 ns
0.34

Shoot density 50 3 50 m grid
50 3 50 m grid, REI .3 3 106

Video transect
Video transect, REI .3 3 106

2.39 3 1024 REI 1 1547.9
5.58 3 1024 REI 1 3.89
1.39 3 1024 REI 1 1026.9
2.47 3 1024 REI 1 2983.07

68
26
73
34

0.14
0.04
0.04 ns
0.033 ns

Belowground biomass 50 3 50 m grid
50 3 50 m grid, REI .3 3 106

Video transect
Video transect, REI .3 3 106

4.50 3 1025 REI 1 100.53
5.89 3 1025 REI 1 33.78
1.60 3 1025 REI 1 56.17
2.07 3 1027 REI 1 3.685

68
26
73
34

0.23
0.056 ns
0.085
0.024 ns

Aboveground biomass 50 3 50 m grid
50 3 50 m grid, REI .3 3 106

Video transect
Video transect, REI .3 3 106

24.91 3 1027 REI 1 56.364
23.89 3 1026 REI 1 70.639

2.91 3 1028 REI 1 22.233
1.41 3 1028 REI 1 45.12

73
34

ns
ns
0.028 ns
0.001 ns

Notes: The abbreviation ‘‘ns’’ indicates a regression slope not significantly different (P . 0.05) from zero. N 5 sample
size. These are results for Analysis IX, Table 3.

TABLE 6. Principal-components (PC) analysis of North Car-
olina seagrass habitat attributes based on video transect
quadrat-derived samples.

Attribute PC1 PC2 PC3

Sediment percentage of
organic matter content

20.160 0.892 0.240

Shoot density
Aboveground biomass
Belowground biomass

0.167
0.658
0.717

20.199
0.389

20.112

0.963
20.085
20.092

Notes: Values in italic type are eigenvectors with strong
loading for individual attributes. Percentages of contributions
of principal components were 38.6%, 26.8%, and 24.6%, and
the cumulative percentages of variance accounted for by ad-
dition of the principal components were 38.6%, 65.4%, and
90.1% for PC1, PC2, and PC3, respectively.

iance. When multivariate (PCA) analysis was recom-
puted for the old and new REI values, using these three
transects, no changes in distribution of loading among
principal components was found as compared with the
previous analysis using all observations (not shown).

DISCUSSION

Predicting seagrass cover from video transect
and grid data

Temporal coherence of the cover–REI relation-
ship.—In order to proceed with the comparison of the
video transect and the grid-sampled data sets, we had
to deal with a 3-yr separation of the two surveys. We
approached this problem by evaluating the seagrass
cover–REI relationship to determine if it remained as
described by Fonseca and Bell (1998). When the re-
gression lines of percent cover on REI from the two
studies were compared, the nature of the relationship
was similar. What is noteworthy was that more seagrass
was found per unit increase in REI in 1995 as opposed
to the earlier surveys (Fig. 3). The coherence of the
percent cover–REI relationship for the grid-sampled
sites between 1991–1992 and 1995 suggest that this

relationship has been maintained and that video tran-
sect surveys of the areas in 1995 should have encoun-
tered beds with as much or more cover as in existence
in 1991–1992. Moreover, this similarity in the rela-
tionship between REI and seagrass coverage over time
supports the notion that the relationships derived by
Fonseca and Bell (1998) were not simply an artifact of
a single sampling effort.

Despite the differences in sampling strategies be-
tween the two survey types, the multivariate analysis
(PCA) of the video transect data revealed some simi-
larities to the findings of Fonseca and Bell (1998) that
were derived from the discrete 50 3 50 m grid-sampled
sites. As was seen by Fonseca and Bell (1998), biomass
values here loaded separately from sediment organic
content. However, shoot density loaded on yet another
eigenvector whereas for Fonseca and Bell (1998) it
loaded with biomass. This change in loading may be
because in the grid-sampled sites, shoot density was
significantly correlated with REI (Table 5) whereas it
was not along video transects. This means that changes
in shoot density would not necessarily follow that of
an REI-correlated factor such as belowground biomass.
We suspect that separation of these factors onto dif-
ferent eigenvalues may arise because samples taken
along video transects were less apt to be spatially au-
tocorrelated (see Predicting seagrass bed attributes and
Influence of scale dependence on predictions).

Predicting seagrass bed attributes.—When compar-
isons between the video transect and grid-sampled sites
were made, large-scale features of the landscape, such
as patches several meters in width that were visually
apparent in the 1995 aerial photography (see Plate 1),
appeared to be best quantified by sampling over a large
spatial extent (hundreds of meters or greater). Con-
versely, the ecological attributes of biomass, shoot den-
sity, and sediment composition, attributes of the sea-
grass beds that would not be readily detectable from
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FIG. 10. Three-dimensional plot showing eigenvalues for the first three significant principal components (PC) computed
for video transect (1995), quadrat-derived data on shoot density, above- and belowground biomass, and percentage of sediment
organic content. Balloons represent sites with relative (wave) exposure index value categories . 3 3 106 (based on midpoints
in increments of 1 3 106).

aerial photography, were best characterized by sam-
pling over a shorter spatial extent (1–50 m). Therefore,
only seagrass cover showed the potential for being
scaled to coarser levels of representation with statistical
predictability. Specifically, when stratified by REI, data
collected on seagrass coverage over a larger spatial
extent at each site (i.e., video transect data) improved
prediction strength over that collected from the 50 3
50 m grid-sampled sites (Table 4) by ;38%.

However, when combined across energy regimes,
both data collection methods (video transect and grid
sampling) were almost equal in their ability to predict
seagrass cover, despite seagrass cover exhibiting a loss
of scale dependence at ;300 m, nearly four times lon-
ger than the longest dimension in the grid-sampled sites
(where scale dependence of coverage was lost at ;10
m). We posit that the limited spatial extent of coverage
sampling at a grid-sampled site was compensated by
having sampled many 50 3 50 m sites across the full
local gradient of hydrodynamic settings as well as sea-
grass coverage (also see Fonseca and Bell 1998). Be-
cause the video transect data captured a larger range
of scale-dependent variation in seagrass cover at each
sampling site, a somewhat greater predictive strength
should have been derived from these data, as was the

case (Table 4). Conversely, data collected on seagrass
ecological attributes were generally better predicted
(albeit with very low r2) by grid-sampled data. These
grid-sampled data were collected with greater local rep-
lication (three samples per 50 3 50 m grid) and cor-
related with REI and water depth values derived over
a smaller geographic extent than that of the video tran-
sect data. It may be that because the full extent of these
grid-sampled sites was well within the range of spatial
scale dependence detected using the video transect
data, the attributes were spatially autocorrelated, con-
tributing to a somewhat higher r2. With video transects,
the sampling locations of throwtraps were sometimes
spaced hundreds of meters apart and, therefore, were
less susceptible to spatial autocorrelation. Therefore,
if seagrass coverage surveys are anticipated to occur
over a range of REI and coverage levels, either grid-
sampled or video transect surveys would be effective
methodology, but only if care is taken to avoid biasing
the sample collection towards certain water depths, par-
ticularly with grid-sampling (Table 4). However, over
large areas, especially where patchy seagrass beds will
be encountered, the video transect approach should
yield better results.

Influence of scale dependence on predictions.—Es-
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tablishing relationships among ecological variables us-
ing a cross-scale comparison of data (i.e., data collected
at differing spatial extent) is frequently a problem in
field studies (sensu Cao and Lam 1997). Here, when
seagrass coverage taken from grid-sampled sites was
averaged at the same scale as that of the associated
REI computation (50 3 50 m), a strong correlation with
REI was found. However, when computing a regression
with coverage predicted at 1 m but REI computed .1
ha (Table 2), prediction strength was much less. An-
other example of cross-scale comparisons eroding pre-
dictive strength may be found when the Somer’s D
values for this study (which ranged from 0.313 to 0.80)
were compared with the findings of Narumalani et al.
(1997). Narumalani et al.’s data on a freshwater eco-
system all were collected at the same spatial resolution
and had Somer’s D values .0.90, whereas coverage
and water depth data here were collected with much
higher spatial resolution than was the computation for
REI (one value for each 0.25-ha grid-sampled site and
1.0-ha resolution for transects). These data suggest that
the prediction of seagrass coverage as a function of
hydrodynamic setting can be improved not only by
increasing the spatial extent of sampling at a fixed res-
olution (1 m) as was done with the video transects, but
by ensuring that data for both dependent (e.g., percent
cover) and independent (e.g., REI) variables are av-
eraged over similar scales (spatial extent and resolu-
tion).

Influence of sampling protocol.—Distribution of ef-
fort between the two sampling techniques also con-
tributed somewhat to prediction strength. Here, sam-
pling efforts were obviously biased by collection pro-
tocols. All of the grid-sampled sites were surveyed by
walking and systematically observing each 1 m2 of the
site for seagrass cover (Fonseca and Bell 1998). Sam-
pling by walking probably biased site selection towards
shallow sites easier to traverse on foot, and these sites
happened to range to the low end of the REI. By con-
trast, the video transect data collection occurred in
deeper areas where the boat could maneuver and were
associated with the higher end of the REI. Consequent-
ly, when just the higher REI ranges were examined,
the correlation between percent cover and REI category
was improved for the video transect data (Fig. 8b).
Interestingly, when these coverage data were reana-
lyzed under logistic regression using only portions of
the data sets where REI and MSL values overlapped,
the only substantive change in prediction strength was
a severe erosion of prediction strength using grid-sam-
pled data (Table 4). Limiting the analysis to overlap-
ping data ranges eliminated the higher REI sites from
consideration and revealed the importance of having
representative sampling across REI (and by correlation,
MSL) for these sampling sites.

The bias in sampling REI and water depths among
the two data types also may have revealed the sensi-
tivity of seagrass coverage to the interplay of wave

effects and water depth. Because water depth deter-
mines the amount of wind wave energy that reaches
the seafloor, shallower sites should experience greater
and more frequent wave-induced water motion than
deeper sites. Even though the grid-sampled sites tended
to be located in more protected settings and had a gen-
erally lower REI, they were also shallower (than video
transect data), and the logit function tended to reveal
a greater effect of REI at these sites as compared with
video transect sites. The generally higher REI (and
deeper) video transect sites were influenced less by REI
(Table 4). This sensitivity suggests that these models
may be applicable in other geographic areas having
similar ranges of REI and water depths, although this
awaits confirmation.

Tests of these models in other locations should con-
sider the potential embedded bias in the sampling by
the two approaches. Predictions of cover for small, qui-
escent, shallow sites may be better based on the grid-
sampled data, while deeper, more exposed sites spread
over large areas were better described by the video
transect-based model. As would be expected though,
the greater the range of REI and MSL within the data
set, the better the prediction, particularly when using
the grid-sampled approach. Moreover, these models
might also be better adapted elsewhere if local light
attenuation coefficients were incorporated in place of
depth data alone to predict accurately light availability
to the plants. An estimation of light availability at the
seafloor could be added by applying an attenuation co-
efficient to the depth data, allowing the light require-
ments of seagrass to enter the model.

Modeling ecological attributes across
hydrodynamic gradients

Processes influencing predictive strength—matching
scale with process.—Although there is strong correl-
ative evidence that hydrodynamic setting, when ex-
amined at a coarse scale of resolution, influences a
number of seagrass ecosystem functions (Taylor and
Lewis 1970, Patriquin 1975, Orth 1977, Fonseca et al.
1983, Kirkman and Kuo 1990, Irlandi 1996, Fonseca
and Bell 1998), our data collected for ecological attri-
butes over a larger geographic extent (video transect
sites) had an even lower predictive strength than those
with already low r2 values collected from smaller geo-
graphic extent (grid-sampled sites). Several ecological
processes acting at scales closer to the 1-m scale may
produce effects not detectable when sampling at coars-
er scales (i.e., this is the ‘‘Scale of Action’’; Cao and
Lam 1997). Grazing, sediment bioturbation, fishing
gear impacts, local variations in sediment composition
and chemistry, macroalgal or epiphyte biomass (influ-
encing light availability), and perhaps most impor-
tantly, the recent history of extreme events (Gaines and
Denny 1993, Fonseca et al. 2000b), may all act to dis-
rupt the nexus of seagrass coverage, density, biomass,
and sediment composition with wave exposure. All of
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these factors are available to influence the seagrass beds
near Beaufort. Conversely, correlations between sea-
grass cover and REI tended to improve as data were
aggregated at spatial scales more like that at which
wave effects (REI) were computed (1 ha; Fig. 8a, b),
suggesting that indeed some factors influencing the sea-
grass bed attributes sampled at fine scales do not act,
or at least are not detectable, at all scales and may be
overridden by processes operating over coarser scales
(Schoch and Dethier 1996). Likely candidates for the
coarse scale factors in this study would be the wind
field, represented as REI, and basin geomorphology,
represented as water depth.

Another factor that may influence interpretation of
these data is the known existence of a threshold in
seagrass bed coverage, shape, and associated sediment
composition that occurs near an REI of ;3 3 106 for
the seagrass beds near Beaufort (Fonseca and Bell
1998). Fonseca and Bell (1998) found that several eco-
logical attributes displayed an abrupt transition near an
REI of ;3 3 106, including percent cover of seagrasses,
seagrass bed perimeter-to-area ratio, and sediment or-
ganic content and percentage of silt–clay. Under this
threshold model, because point samples of seagrass
beds taken in association with video transects were
mostly above the 3 3 106 REI threshold, only weak or
nonexistent correlations with REI would be expected.
The close agreement of the percent cover regressions
between the two data types (Fig. 7b) when only the
high REI data were regressed (contrast with Fig. 7a)
further suggests that undersampling shallow, low REI
sites in the video transect data poses significant prob-
lems with extrapolating those data across the REI
threshold.

Shoaling effects on prediction of seagrass cover
and ecological attributes

Local geomorphology emerged as being a critically
important factor to incorporate into seagrass coverage
modeling, likely irrespective of which sampling ap-
proach is employed. When submerged shoals were in-
corporated into a subset of the video transect data, bet-
ter prediction was achieved for both the local deposi-
tional environment (increased prediction strength for
sediment percentage of organic matter content) and the
combined influence of REI and water depth on seagrass
coverage probability. Therefore, it may be desirable to
derive an REI computation that not only includes ef-
fective fetch, but also a weighting of the proximity of
shallow water, especially if a critical shoal depth
(where shoal effects become evident) could be deter-
mined. A model similar to that used in this study could
be used to determine distance to these shoals and not
just hard shorelines during GIS modeling. Adding these
shoal data to improve prediction strength also points
out the need for accurate bathymetric surveys. Unfor-
tunately, bathymetric surveys may be quite out of date
(;100 yr old for many areas near Beaufort) and are

not often conducted over areas away from navigational
channels where many seagrass beds occur, potentially
diminishing their value in REI modeling.

CONCLUSIONS

The development of predictive vegetation modeling
(sensu Franklin 1995) has only begun in seagrass eco-
systems. However, we have shown that predicting the
occurrence of seagrass cover based on physical setting
is feasible. Such predictions of seagrass cover and as-
sociated landscape pattern are important for not only
selecting potential restoration sites, but also for setting
realistic management goals based upon unambiguous
success criteria. For example, under a given REI and
MSL, a site might be predicted to only achieve 50%
cover, indicating that additional sites would be needed
to generate a target level of restored seagrass acreage
(Fonseca et al. 1998). Like landscape cover, predicting
other restoration criteria, such as shoot density or bio-
mass (Fonseca et al. 2000a), is critical for determining
the recovery trajectory and computing lost interim re-
source services and civil penalties for damages to sea-
grasses.

The influence of sampling scale and survey method
on the prediction of coverage and ecological attributes
of seagrass beds dictates that resource managers and
other environmental scientists need to choose sampling
designs carefully in the Beaufort area and perhaps other
like habitats. These data suggest that the prediction of
seagrass coverage as a function of hydrodynamic set-
ting can be improved not only by increasing the spatial
extent of sampling at a fixed resolution (1 m), as done
with the video transects, but by ensuring that data for
both dependent (e.g., percent cover) and independent
(e.g., REI) variables are averaged over similar scales
(spatial extent and resolution). Moreover, low REI ar-
eas, characterized by more continuous, low-relief beds,
appear to be easily identified by video transect meth-
ods. Similar conclusions were reached by Narumalani
et al. (1997) in a study of submersed vegetation in a
freshwater setting.

In this study, the small lack of overlap of REI and
MSL between the two sampling approaches did not
diminish predictive ability, although sampling across
a broad range of REI and MSL values is obviously
required to improve predictive modeling efforts. Large-
scale features of the landscape such as patches several
meters in width appeared to be best quantified by sam-
pling over a large spatial extent (hundreds of meters
or greater). However, unless one can somehow be cer-
tain that the full local range of seagrass bed cover is
captured in the smaller scale sampling, contiguous sam-
pling over a broad spatial extent (hundreds of meters)
is the more appropriate strategy for detecting patterns
of seagrass bed cover. Conversely, ecological attributes
of the seagrass bed (biomass, shoot density, and sed-
iment composition), features that are not readily de-
tectable from aerial photography, were best character-
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ized by sampling over a shorter spatial extent (1–50
m). Very localized conditions may have influenced pat-
terns of seagrass community attributes, indicating that
traditional sampling of ecological attributes at the 1-
m scale is justified for organismal level studies of sea-
grass beds and perhaps their resident fauna as it may
best approximate the ‘‘scale of action’’ for these attri-
butes (sensu Cao and Lam 1997). Sampling over a
broad spatial extent may then be the most parsimonious
means of detecting changes in seagrass cover arising
from anthropogenic disturbances, such as channel
deepening or shoreline hardening, that may have in turn
changed a site’s exposure to waves and water depth
(and light). Moreover, generalizing information about
seagrass bed ecological attributes obtained from high-
resolution samples (fine scale) taken over a broad spa-
tial extent (coarse or landscape scale), as may occur
with resource surveys and impact assessments, has the
potential to be highly misleading, especially in patchy
environments (sensu Schoch and Dethier 1996). When
comparisons between the video transect and grid-sam-
pled sites were made, only seagrass cover showed the
potential for being scaled to coarser levels of repre-
sentation with statistical predictability.

Finally, by linking this modeling to temporal dy-
namics of seagrass beds (Fonseca et al. 2000b), we
anticipate that researchers will be able to both forecast
and hindcast the consequences of extreme storm events
on changes in seagrass cover and associated ecological
attributes. Predictive capabilities of this kind will allow
resource managers the ability to separate the influence
of aperiodic extreme events on seagrass bed distribu-
tion and function from that of anthropogenic events.
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