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describing spatial variations in environmental factors andAbstract
plant community structure (Ristaino and Gumpertz, 2000;Sudden Oak Death is caused by a newly discovered virulent
Lundquist and Klopfenstein, 2001).pathogen (Phytophthora ramorum) that is killing thousands

We present a landscape-scale study of the spatio-temporalof native oak trees in California. We present a landscape-scale
dynamics of Sudden Oak Death (SOD), an alarming disease thatstudy on the spatio-temporal dynamics of oak mortality.
is killing thousands of native oak trees and tanoaks in the CoastSecond-order spatial point-pattern analysis techniques
Ranges of California and southwestern Oregon (McPherson et(Ripley’s K) were applied to the distribution of dead tree
al., 2000; Garbelotto et al., 2001). Considerable progress hascrowns (derived from high-resolution imagery) in Marin
been made in the past year identifying host species and under-County, California to determine the existence and scale of
standing how this disease is related to other tree-killing dis-mortality clustering in two years (2000 and 2001). Both years

showed clustering patterns between 100 and 300 m. A eases (Davidson et al., 2001; Davidson et al., 2002; Rizzo et al.,
classification tree model was developed to predict spatial 2002). However, we still do not know how the disease extends
patterns of risk for oak mortality based on several landscape- its range across California’s landscape, and we have no ability
scale variables. Proximity to forest edge was the most important to predict which stands of trees are at high risk of infection. The
explanatory factor, followed by topographic moisture index, objectives of this research are to
proximity to trails, abundance of Umbellularia californica, and

● Determine the distribution and rate of oak mortality in thepotential summer solar radiation. This research demonstrates
study area;the utility of integrating remotely sensed imagery analysis with

● Determine the scale and extent to which the oak mortality isgeographic information systems and spatial modeling for
spatially clustered;understanding the dynamics of exotic species invasions.

● Determine the relative importance and combined effects of criti-
cal landscape factors governing the spatial pattern and spreadIntroduction
of oak mortality; andBiological invasions are spreading at such a rapid pace that

● Develop a risk model for Sudden Oak Death in Marinthey are considered a major component of global and land-
County, California.scape-level environmental change (Vitousek et al., 1996).

Invasions are devastating ecological systems by reducing bio- Sudden Oak Death is caused by a newly discovered viru-diversity, altering ecosystem processes, and functioning as vec- lent pathogen (Phytophthora ramorum) that was most likelytors of disease (Parker et al., 1999). The spread of non-native introduced to California from abroad (Rizzo et al., 2001). Theplant pathogens can have particularly strong influences on eco-
pathogen kills several keystone tree species in California eco-system dynamics due to their ability to directly kill host spe-
systems including tanoak (Lithocarpus densiflorus), coast livecies, permanently changing genetic diversity and community
oak (Quercus agrifolia), and black oak (Q. kelloggii). Thestructure. As such, the mechanisms underlying the dispersal
pathogen also colonizes the foliage of several other overstoryof pathogens are critical issues being pursued from a variety of
and understory hosts without killing them (Rizzo et al., 2002).approaches and spatial scales (Thrall and Burdon, 1999).
These species include California bay laurel (Umbellularia calif-Spatial pattern is one of the most fundamental properties
ornica), California rhododendron (Rhododendron macrophyl-of disease dynamics because it reflects the environmental
lum), huckleberry (Vaccinium ovatum), madrone (Arbutusforces acting on the dispersal and life cycles of a pathogen
menziesii), California buckeye (Aesculus californica), bigleaf(Ristaino and Gumpertz, 2000). For this reason, researchers of
maple (Acer macrophyllum), and manzanita (Arctostaphylosplant disease epidemics are increasingly using landscape
manzanita).approaches to quantify and model spatial patterns of disease

The disease has been officially confirmed in ten coastalspread in order to understand the basic factors that influence
counties of California (Figure 1), and known hosts for the dis-pathogen dispersal and infection processes. Despite the
ease exist in many more counties across the state. It has alsostrengths of a landscape approach, relatively few studies have
been detected on 16.2 ha in southern Oregon and is known todeveloped spatial models of disease patterns in natural sys-
cause leafspots and twig dieback on rhododendron in Germanytems due to the challenge of integrating numerous, spatially ref-

erenced samples of disease incidence with digital maps and The Netherlands. Marin County, California is one of the
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from sea level at San Francisco Bay to about 260 m. This mixed
hardwood forest contains near even-age stands; these hillsides
were cleared for lumber in the early to mid-1800s. All of the
woody plants can serve as host for Phytophthora ramorum in
these forests with the exception of valley oak (Rizzo et al.,
2002). Forest overstory is primarily coast live oak but can also
include black oak, bay laurel, and madrone. Buckeye and man-
zanita occur at the margins of closed canopy (Rizzo et al., 2002).

Method
Database Development

Remote Sensing of Oak Mortality
The use of remotely sensed data for monitoring forest health
and forest inventories has a strong history in conifer stands,
but less work has been done in hardwood forests (Boyer et al.,
1988; Everitt et al., 1999; Gong et al., 1999). The pathology of
this new disease affords opportunities for continued develop-

Figure 1. Sudden Oak Death in California. (A) distribution ment of techniques for remote sensing in hardwood forests, as
of susceptible host species and locations of positive isola- well as characterization of the disease at a landscape scale. The
tions of P. ramorum. (B) Marin County, showing the study disease has three characteristics that make a monitoring
area and the possible range of host species within the approach that uses remote sensing useful. First, as the trees
County. with the disease die, in most cases the entire crown changes

dramatically from healthy green to brown, and over a short time
period (Rizzo et al., 2002). Second, after canopy change has
occurred, the leaves can stay adhered to the branches for
months, giving trees a characteristic “freeze-dried” appear-“hot-spots” for SOD. Throughout the County (and central

coastal area of the state) dramatic dieback of tanoaks, coast live ance. Third, the affected Quercus species make good targets for
high-resolution imagery because the coast live oaks have aoaks, and black oaks is occurring, presenting serious threats to

alter the ecology, wildlife habitat, soil erosion properties, fire broad multi-stem canopy (Pavlik et al., 1991), and the disease
seems to disproportionately affect overstory trees (Swiecki andregime, and aesthetic value of thousands of hectares of coastal

forest ( McPherson et al., 2000; Garbelotto et al., 2001). Bernhardt, 2002). Classification of dead and dying trees can be
used in spatial pattern analysis to understand landscape struc-Little is still known about mechanisms driving the dis-

persal of the disease, but preliminary evidence suggests an ture of oak mortality.
Digital imagery (ADAR5500) was acquired for the Chinaaerial phase (Davidson et al., 2001; Davidson et al., 2002) in

possible combination with efficient long-range vectors, high Camp study area on 30 March 2000 and 05 May 2001 with an
ADAR5500 imaging system that was comprised of an SN4 20-mmlevels of inoculum production, and high levels of virulence

(Swiecki, 2001). It is currently believed that the oaks are termi- lens with four mounted cameras (Spectral Bands: Blue: 450 to
550 nm; Green: 520 to 610 nm; Red: 610 to 700 nm; Near-Infra-nal hosts (meaning the pathogen will not emerge from the tree

to infect other trees) with spread occurring primarily from one red (NIR): 780 to 920 nm), flown at an average aircraft altitude
of 2,205 m. Imagery was acquired near noon on both dates, inor more of the foliar hosts (i.e., Umbellularia californica)

(Davidson et al., 2001; Davidson et al., 2002). Foliar hosts are clear-sky conditions, with comparable solar elevation and
zenith angles (solar elevation for 2000 � 53.53�, and solar eleva-plants that contract a form of the disease that remains for the

most part on the leaves, and does not infect the main stem of tion for 2001 � 58.65�). A contractor performed imagery acqui-
sition, image mosaicking and registration. The average groundthe plant. These foliar hosts are suspected to be the most dura-

ble and persistent source of the inoculum, and during wind and instantaneous field of view of the images is 1 meter. Near anni-
versary dates were chosen to maximize the springtime canopyrain events the fungus can be dispersed to infect new trees

(Davidson et al., 2002). Low tree water stress and the amount of cover changes associated with SOD, and to minimize misclassi-
fication caused by early color change of California buckeye, atree canopy cover may also contribute to disease occurrence

(Swiecki and Bernhardt, 2002). summer drought deciduous tree that can appear similar to SOD-
affected trees when seen from a distance.This work builds on previous efforts that have mapped

dead and dying oaks in a study area in Marin County, Califor- The 2000 imagery was classified for dead and dying
crowns using a combination of unsupervised classificationsnia using high-resolution imagery (Kelly, 2002). We integrate

cases of oak mortality derived from remote sensing with spa- (ISODATA clustering), spectral enhancements (NDVI and PCA),
spatial search, and manual methods (Kelly, 2002). The accu-tially distributed environmental variables to study spatial clus-

ters of oak mortality and model interacting factors of disease racy of this classification was 92 percent (Kelly, 2002). A
normalized difference vegetation index (NDVI) was then calcu-presence and spread over the landscape. It is important to note

here that we are assuming that, in the study area, the overstory lated for each date using the standard formula (NIR � Red)/(NIR
� Red). No corrections were applied to the raw imagery beforemortality we see from remotely sensed imagery is due to the

pathogen P. ramorum. NDVI calculation, because the images were collected at near
anniversary dates, with clear sky conditions on both days. The
2001 imagery was used with 2000 imagery in an NDVI imageStudy Area

The study area for this project is within the area defined by subtraction and thresholding procedure that yielded dead and
dying tree crowns for the study area for the year beginning AprilChina Camp State Park (38.0�N, 122.5�W), a forested peninsula

on the east side of Marin County (Figure 1). The study area is 2000. Centroids of dead and dying crowns were retained for
use in point-pattern analysis. In the study area, 1,086 deadthe north-western portion of the Park, covering 370 ha (of

which 210 ha are forested). It generally faces north, and ranges crowns (about 5 trees per forested ha) were found in spring
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2000, and 1,394 dead crowns (about 7 trees per forested ha) The equation in this form assumes uniform soil transmis-
sivity across the study area. Locations with small upslopewere found in 2001.

A combination of supervised classification (minimum- drainage areas (e.g., ridges) have lower TMI values than do sites
with large upslope areas (e.g., toeslopes and drainages). Givendistance classifier) and manual determination was also per-

formed to locate centers of overstory bay trees. The accuracy of constant upslope area, steep slopes have lower TMI values than
do gentle slopes. Potential direct beam solar insolation (PSI)this map was not assessed. A forest land-cover class was

derived from an unsupervised classification routine. This was calculated for each grid cell in the DEM using the cosine of
the illumination angle on slope (Dubayah, 1994): i.e.,image was smoothed using several iterations of mean filters to

remove individual pixels classified as bare, and the result is
used to show the general forested area in Figure 2. This area was PSI � cos�cosS � sin�sinScos(� � A)
used to compare the distribution of dead and dying trees in
2000 and 2001 with like numbers of randomly located live trees where � is the solar zenith angle, � is the solar azimuth, S is the
(n2000 � 1086 and n2001 � 1394). Finally, park trails were manu- slope of the terrain, and A is the aspect of the slope. Both S and
ally digitized from a 1:6,000-scale map of trails used for A are derived from the digital elevation model. The PSIw was
orienteering. calculated as the average daily PSI for winter (21 December to

21 March), and PSIs was calculated as the average daily PSI for
summer (21 June to 21 September 21). The index is rescaledDerivation of Landscape Predictor Variables

Eight landscape variables were derived for modeling relation- from 0 to 255 (low to high potential solar insolation). Examples
of six of these variables are found in Plate 1.ships between the environment and spatial patterns in oak

mortality incidence. Five of the variables were derived from a
high-resolution (5-m) digital elevation model (DEM) produced Analysis
for Marin County using photogrammetric methods. These
include elevation, slope gradient, topographic moisture index Spatial Pattern of Oak Mortality
(TMI), and potential solar insolation over the winter (PSIw) and The rates of oak mortality spread were examined by comparing
summer (PSIs). The remaining three variables include the den- the numbers of dead crowns in 2000 with the number of dead
sity of Umbellularia californica per ha (BAY), distance to the for- crowns in 2001. We also examined and tested the significance
est edge (EDGE), and distance to the nearest trail (TRAIL). of the pattern (distance and direction) of oak mortality spread

The topographic moisture index (TMI) (Beven and Kirkby, between the two years. The distribution of distances from each
1979) was computed to characterize topographic effects on dead tree in 2001 to its nearest dead neighbor in 2000 was com-
potential soil moisture distribution. TMI is the natural log of the pared to the distribution of distances from each dead tree in
ratio between upslope drainage area, a (m2) and the slope gra- 2001 to its nearest random live neighbor using an unpaired t-
dient of a given grid cell, b (Moore et al., 1991): i.e., test. The bearings associated with these shortest distance were

also examined, and Raleigh’s (Batschelet, 1981) statistic (Rdead
for bearings from 2001 to 2000, and Rrandom for bearings fromTMI � ln(a/tanb).

(b)(a)

(d)(c)

Figure 2. Distribution of dead and dying trees and randomly located live trees
used to test spatial pattern significance. (a) Dead crowns in 2000. (b) Dead
crowns in 2001. (c) 1,086 randomly located live trees. (d) 1,394 randomly
located live trees.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Plate 1. Derived environmental variables used in classification tree analysis.
The clustering of dead crowns is shown in (a), and the study area from high-
resolution imagery shown in true color (b) is presented for comparison. In (b)
dark green areas are mixed oak woodlands affected with SOD; light areas
indicate roads, paths, and gaps in forest cover. (c) and (e) are derived from
high-resolution imagery (b). Potential Solar Insolation in the summer (f) and
topographic moisture index (h) are derived from Digital Elevation Model (d). In
(h) yellows indicate ridges, and blues indicate drainages.

2001 to random) were tested for randomness (Batschelet, 1981; Ripley’s K statistic ( Ripley, 1976; Ripley, 1981) allows for test-
Kelly, 2000). Raleigh’s test for circular distribution involves ing of complete spatial randomness and is defined as the expec-
using the sum of the cosine of each bearing and the sum of the ted number of individuals within a distance t of a randomly
sine of each bearing to derive a mean angle, theta, and a normal- chosen individual in a population ( Ripley, 1976; Kenkel, 1988;
ized vector length that can be compared to a normal circular Cressie, 1993; Kenkel, 1994;). The method has been used to
distribution function. Random distributions of bearings yield study mortality patterns and tree interactions in numerous sys-
very small normalized vector lengths (Batschelet, 1981). tems (Andersen, 1992; Szwagrzyk and Czerwczak, 1993; Vacek

and Leps, 1996; Cole and Syms, 1999; Eccles et al., 1999; Gore-Second-order spatial point-pattern analysis techniques
aud and Pelissier, 1999), and can be followed by analyzing envi-(Ripley’s K) were applied to the distribution of dead and dying
ronmental factors possibly controlling the existence and spreadtrees in 2000 and to the total dead trees in 2001 to determine the

effective distance of dispersal mechanisms for this disease. of disease (Szwagrzyk and Czerwczak, 1993).
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We calculated Ripley’s K and Lhat (transformed K) for dis- where n is the number of samples, Pi is the predicted probabil-
ity of presence rounded to 0 (absent) or 1 (present), and Oi istances between 10 and 1000 m at 10-m intervals. Upper and

lower limits for significance were determined by Monte Carlo observed incidence (0 or 1). Positive and negative MER values
indicate over- and under-prediction, respectively.simulations (100 binomial simulations to determine upper and

lower bounds of significance). Because Ripley’s K can be sensi-
tive to edges (Haase, 1995; Goreaud and Pelissier, 1999), we did Results
not analyze the outer 20 m of the study area. This reduced the

Spatial Pattern of Oak Mortalitybias that could be introduced by the many clusters of trees at
We calculated an annual rate of mortality of about 216 per yearthe north end of the area.
or just over one tree per ha using the mortality derived from
remotely sensed imagery.

Risk Model Development and Validation The results of the unpaired t-test between the distribution
Relationships between the occurrence of biological organisms of distances from each tree in 2001 to its nearest dead neighbor
and landscape factors are often non-monotonic and involve in 2000, and from each tree in 2001 to its nearest neighbor from
complex interactions (Austin et al., 1990; Franklin, 1995). As the population of 1,086 randomly located trees indicated that
an alternative to logistic regression, we used classification the distributions are not significantly different at � � 0.05 (t �
trees (De’ath and Fabricius, 2000) to model relationships 1.65).
between oak mortality incidence and landscape variables due The bearings of the shortest distance vector between a dead
to the method’s ability to capture hierarchical and nonlinear crown in 2001 and its closest dead neighbor in 2000, and those
relationships and expose interactions among predictor vari- between a dead crown in 2001 and a random tree, were also
ables (Clark and Pregibon, 1993; Michaelsen et al., 1994; De’ath found to be randomly distributed. The mean angle, theta, and
and Fabricius, 2000). The response variable included 1,075 normalized vector length, R, were smaller than the test statistic
remotely sensed observations of SOD presence at time period for � � 0.05 in both cases (bearings from 2001 to 2000, and from
2000 and 1,075 randomly distributed observations of disease 2001 to random), and the null hypothesis for randomness was
absence. The observations of oak mortality incidence were then accepted for both cases (Rdead � 0.006, Rrandom � 0.002).
merged with the corresponding cell values of each landscape Ripley’s K analysis was performed on the distribution of
variable for model development. We did not space the samples dead and dying trees in 2000, and the dead and dying crowns
at distances greater than the clustering distance indicated by through 2001. Monte Carlo simulations were used to compare
the Ripley’s K statistic because the study area is not large observed distributions to those randomly selected from the
enough to allow this spacing of samples and obtain a sufficient underlying tree pattern. Both years showed clustering patterns
number of samples for model development and validation. We across similar spatial scales. The distribution of dead crowns
are currently extending this work to larger areas, which will in 2000 shows clear evidence of clumping between 100 to 300
enable us to better examine the effect of spatial autocorrelation m (Figure 3a). From 500 to 1000 m, the pattern is closer to ran-
on model development. dom, but still significantly clustered. The distribution of dead

Classification tree models are developed by recursively trees through 2001 shows significant clustering between 100
partitioning the response variable into increasingly homoge- and 300 m, and from 700 m to 900 m. From 300 to 700 m, the
neous subsets based on critical thresholds in continuous or cat- pattern is closer to random but still clustered (Figure 3b).
egorical variables. The dataset is partitioned on the predictor
variable, which upon splitting at some break point yields the Classification Tree Model of Oak Mortality Risk
greatest reduction in the error sum of squares for the response The classification tree model (Figure 4) was developed using
variable. Tree-based models are typically graphically displayed mortality information from 2000, and tested with tree mortal-
so that one can follow the tree node (root), through a series of ity data from 2001. The model explains 63 percent of the vari-
binary splits on the predictor variables (branches), to an end ability in the location of oak mortality when evaluated with the
node (leaf ) (e.g., see Figure 4). The predicted value at each end data used for model development (2000). Using the test data
node is the mean value of all observations that flow through the (from 2001), the risk model corresponded to 58 percent of the
tree to that node. The estimate for all observations that follow spread that occurred in 2001 with a slight tendency to over-
the same lineage of branchings from root to a given leaf is given predict (MER � 0.20).
by the mean x-value for that set of observations. The model is structured such that there are five levels and

To avoid over-fitting the tree model, an iterative cross- 11 end node predictions of risk (Figure 4). Every site has some
validation procedure was used that identifies an optimal tree degree of infection risk, ranging from 0.16 to 0.87. Distance to
size beyond which validation performance drops as additional forest edge, on average, explains the most variance (37 percent)
branches “grow” in response to peculiarities in the develop- (deviance explained by each variable divided by the total devi-
ment data, but fail to account for variance in the test data. The ance of the model) in oak mortality incidence, followed by top-
point at which this occurs suggested the appropriate number ographic moisture index (22 percent), distance to the nearest
of terminal nodes for developing the tree from the entire data- trail (17 percent), density of U. californica (12 percent), and
set, and the classification tree is “pruned” to this optimum size potential summer solar radiation (12 percent). Trees within 6.1
(Davis et al., 1990; Clark and Pregibon, 1993). m of forest edges are at considerably higher risk (0.82) than

The resulting model was then applied to the landscape trees further than 6.1 m (0.45) (Figure 4). Of all combinations of
variables in the GIS to predict spatial variations in the probabil- landscape conditions, SOD risk is greatest for trees that are rela-
ity (or risk) of oak mortality incidence. Model performance was tively close to forest edges (EDGE � 6.1 m), occur in association
evaluated by comparing the predictive risk map to an indepen- with U. californica (BAY � 1), and are within 76 m of a trail
dent dataset that describes where the oak mortality had (n � (TRAIL � 76 m).
687) and had not (n � 687) spread to in year 2001. Finally, we The proximity of a tree to the edge of forest (EDGE � 6 m)
calculated the mean error (MER) in order to identify tendencies was the most important factor explaining oak mortality pres-
of under- versus over-prediction: i.e., ence, followed by density of bay trees (BAY � 1), and proximity

to trails (TRAIL � 76 m). The lowest risk for oak mortality
occurs for trees away from forest edges (EDGE � 9.8 m), on topo-
graphically moist slopes (TMI � 2.56), and with high summerMER � 1/n �

n

i�1
(Pi � Oi) solar insolation levels (PSIs � 202). Intermediate levels of oak
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because pathogen dispersal may occur in waves during the
most suitable weather conditions (Rizzo et al., 2002) and it is
also likely that mortality will decrease in years to come due to
some genetic resistance.

The analysis of oak mortality spread from 2000 to 2001
indicates that dead trees in 2001 are not more likely to be closer
to existing dead trees than to randomly located crowns. New
mortality occurs from 0.5 to over 100 m from existing dead
trees. The pattern analysis presented here suggests that the clus-
tering of mortality, while pronounced, cannot be accounted for
by a directional control, as might be expected with a dominant
aerial phase to disease spread that incorporates wind. More
clues to the possible controls or risk factors for the disease come
from the classification tree analysis.

The pattern and scale of mortality in a forested system can
lend insight into the processes controlling associated diseases,
and the scales and at which they operate (Cole and Syms, 1999).(a)
It has been shown that small scale (� 15-m) pattern of healthy
trees in forests is regular to random (Szwagrzyk and Czerwczak,
1993) and that, absent epidemics, mortality across scales is
often random in pattern (Eccles et al., 1999). In our study area
at very small scales (below 10 m), tree mortality appears ran-
dom. However, second-order pattern analysis indicates strong
clumping of tree mortality in both years across multiple scales.
In both years, mortality clusters (100 to 300 m) correspond to
the small clusters of mortality evident across the study area
visible in Figures 2a and 2b. In 2001, clustering appears
stronger than in 2000 at larger scales (700 to 900 m), which is
possibly related to the fact that dead trees in 2001 are not statis-
tically closer to dead trees in 2000 than to random trees, and
that, as the disease spreads, larger clusters are being formed.
The overall spatial clustering is commensurate with the under-
standing that this is an epidemic and so does not conform to the

(b) random mortality hypothesis, but rather, the disease presence
is controlled by other environmental factors. The spatial scale

Figure 3. Diagram of the Lhat(h)-h transformation for dead of clustering found in this research has important implications
crowns in 2000 (a) and 2001 (b) showing upper and lower for determining plot sizes and sampling designs for future epi-
bounds of the function. Results above the upper limit display demiological research on Sudden Oak Death. Individual plots
clustering; between the upper and lower limits display ran- much smaller than 1 ha in size may not capture spatial pat-
dom pattern; below the lower limit results display regularity. terning occurring at broader scales.

Classification Tree Model of Disease Risk
Classification tree modeling provided a useful approach to
examine interrelationships among environmental factors con-mortality risk generally occur on drier slopes (TMI � 2.56),
trolling oak mortality spread. The analysis reveals that treesincreasing with increasing density of U. californica (BAY � 1.7
within or near the forest edge, near bay trees, and near trailsbay per ha), decreasing distance to forest edge (EDGE � 9.6 m),
have a high risk of mortality. The forest edge is often whereand increasing summer solar radiation (PSIs � 59). The split on
understory foliar hosts such as buckeye and manzanita areTMI (at 2.56) generally distinguishes toeslopes and ephemeral
common, so these results further strengthen the currentdrainages from upper hillslopes in this environment, and indi-
hypothesis that foliar hosts are the most important risk factorcates that oak mortality risk is lower on the topographically
in disease spread (Davidson et al., 2002). Forest edges might bewetter toeslopes and drainages. With the exception of proxim-
a useful surrogate for presence of understory foliar hosts.ity to trails (TRAIL), the direction and the effect of each variable
These understory shrubs are not visible using remote sensing,on oak mortality risk is the same at all levels of the tree (Figure
and so a surrogate for their presence would be very useful in4). For example, greater risk is associated with higher densities
disease modeling.of U. californica regardless of how a far a tree is from forest

The topographic moisture result deviates from Swieckiedges. The variable PSIw was dropped from the classification
and Bernhardt (2002) who found higher risk for disease ontree in the tree “pruning” process, indicating that this variable
moister slopes in a study area in another part of Marin County.was not significant in explaining the distribution of oak
These discrepancies might be the result of analysis in differingmortality.
forest types, or it could indicate that our study area should be
broadened to include more examples of disease over a varietyDiscussion of slopes and soil moisture conditions.

Much concern has been expressed among state agenciesSpatial Pattern of Oak Mortality
It is clear that mortality occurs throughout the study area. about the possible role of humans in spreading the disease. The

first locations of disease confirmation were in parks throughoutDetermining the rates of disease spread in the area requires
assumptions. We assumed that the disease appeared there in the coastal area of the state that have extremely high numbers

of hiking and biking visitors (i.e., Pfieffer Big Sur in the south,1995 and that, at that time, background mortality was zero. We
also used two simple functions to estimate rates. Neither of Sugarloaf and Jack London State Park in the north). Because

the pathogen has been isolated from soil material (Davidson etthese functions, linear or polynomial, are likely adequate
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Figure 4. Classification tree model of disease risk. Ovals and squares represent non-terminal and terminal nodes, respectively.
The values inside the ovals and squares are the predicted probabilities (means) of oak mortality presence. The values beneath
the predictions indicate the proportion of the total deviance that each split explains. Critical thresholds are displayed between
the node connections, splits that provide the basis for calculating predictions. The variable abbreviations are EDGE � distance
to forest edge (m), TRAIL � distance to the nearest trail (m), BAY � density of U. californica per ha, TMI � topographic moisture
index, and PSIs � average potential summer solar radiation. The dark solid arrows indicate the combination of environmental
conditions associated with maximum risk for mortality. The dashed arrow indicates the combination of environmental conditions
associated with the lowest risk of disease.

al., 2002), this recreational activity has often been proposed clusters, and builds a model for understanding the landscape
controls on mortality.as a possible vector to spread the disease within parks and

between parks and other areas. Some caution should be taken The current rate of mortality is 216 trees per year. Measure-
here, however. It is not clear that P. ramorum isolated from soil ment of actual numbers of tree mortality per year might be facil-
is viable as inoculum (Davidson et al., 2002), nor is it clear itated through analysis of historical photography. According to
from this study that proximity to trails is the most convincing simple distance measurements, the disease does not seem to
explanation of spread. While trees within 76 m of trails are at spread from tree to tree (this conforms to current thinking that
higher risk, trees within 40 m of a trail are at lower risk (follow- oaks are a terminal host for the disease), nor is there a prevailing
ing the medium risk trajectory). More important risk factors directional component to the spread.
do not indicate a human vector, but are associated with forest Clustering of mortality is pronounced in each year
structure. observed. Overstory tree mortality in the study area in both

The model has a slight tendency to overpredict oak mortal- years occurs in clusters from 100 to 300 m in size, and in 2001
ity occurrence. This might be a result of the stage of the disease, the mortality also exists in clusters of 700 to 900 m in size.
and it is possible that the mortality will spread to the areas iden- In the study area, the proximity of a tree to the forest edge
tified by the model in later years. Genetic resistance must also (� 6 m) was the most important factor explaining mortality
be considered as an explanation for overprediction. While presence, followed by density to bay trees, and proximity to
some research has begun on the possible genetic resistance of trails. Lowest risk for mortality was found away from forest
individual Quercus to the disease, little is known now on the edges, on moister slopes, and with high summer solar
subject apart from the observation that some individuals radiation.
appear to be resistant. The disease has been in the County for This work provides a model of the risk factors associated
several years, and is well established. For this reason, models with the disease that can be used to map areas at risk for Sud-
developed here might be less applicable in other areas in which den Oak Death throughout Marin County. Further model cali-
the disease is just beginning to spread. It is very likely that bration will continue over larger areas, and in different forests
early infection patterns differ greatly from those of mature dis- to evaluate these issues.
eases. It is also possible that the spatial pattern of and controls The integration of remote sensing with GIS and spatialon the disease vary with forest type. modeling allows for mapping and understanding of disease

spread across large areas. It provides a tool to “scale up” data
Conclusions derived from small plots, and to see spatial patterns and rela-

tionships not readily apparent in smaller plots (� 1 ha). TheChina Camp State Park in Marin County is a known “hot-spot”
disease progression makes a remote sensing approach usefulfor Sudden Oak Death (McPherson et al., 2002; Rizzo et al.,

2002). This work quantifies the scale at which oak mortality for mapping dead and dying overstory crowns. Remote sensing
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Franklin, J., 1995. Predictive vegetation mapping: Geographic model-also provides a method to locate forest edges for use as surro-
ling of biospatial patterns in relation to environmental gradients,gates for edge-related foliar hosts. Still, there is more work
Progress in Physical Geography, 19(4):474 – 499.needed here, including the analysis of hyperspectral imagery

Garbelotto, M., P. Svihra, and D. Rizzo, 2001. Sudden oak death syn-to identify stressed trees before the canopy changes, and risk
drome fells three oak species, California Agriculture, (Jan/Febmapping methods that incorporate understory foliar hosts, as
2001):9–19.well as genetic resistance to the disease.
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