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Abstract

Sudden Oak Death is a new and virulent disease affecting hardwood forests in coastal California. The spatial–temporal dynamics of oak
mortality at the landscape scale are crucial indicators of disease progression. Modeling disease spread requires accurate mapping of the dynamic
pattern of oak mortality in time through multi-temporal image analysis. Traditional mapping approaches using per-pixel, single-date image
classifications have not generated consistently satisfactory results. Incorporation of spatial–temporal contextual information can improve these
results. In this paper, we propose a spatial–temporally explicit algorithm to classify individual images using the spectral and spatial–temporal
information derived from multiple co-registered images. This algorithm is initialized by a spectral classification using Support Vector Machines
(SVM) for each individual image. Then, a Markov Random Fields (MRF) model accounting for ecological compatibility is used to model the
spatial–temporal contextual prior probabilities of images. Finally, an iterative algorithm, Iterative Conditional Mode (ICM), is used to update the
classification based on the combination of the initial SVM spectral classifications and MRF spatial–temporal contextual model. The algorithm was
applied to two-year (2000, 2001) ADAR (Airborne Data Acquisition and Registration) images, from which three classes (bare, dead, forest) are
detected. The results showed that the proposed algorithm achieved significantly better results (Year 2000: Kappa=0.92; Year 2001: Kappa=0.91),
compared to traditional pixel-based single-date approaches (Year 2000: Kappa=0.67; Year 2001: Kappa=0.66). The improvement from the
contributions of spatial–temporal contextual information indicated the importance of spatial–temporal modeling in multi-temporal remote sensing
in general and forest disease modeling in particular.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In central coastal California, a newly discovered pathogen
Phytophthora ramorum has been killing hundreds of thousands
of tanoak (Lithocarpus densiflorus), coast live oak (Quercus
agrifolia), and black oak (Quercus kelloggii) trees (Rizzo et al.,
2002). Infected trees can take between 2 and 20 years to die
(McPherson et al., 2005), however in the last years of life
infected trees decline rapidly, with in many cases the whole
canopy changing color. This change in appearance has lead to
the disease complex name “sudden oak death” (SOD) (Rizzo &

Garbelotto, 2003). Oaks are a major component of many
California hardwood forest ecosystems, and the trees are also
important both in urban landscapes and at the urban/rural
interface (Garbelotto et al., 2001). Currently, the disease has
officially been confirmed in 14 coastal counties of California,
and one county in Oregon. It has reached epidemic proportions
in selected forest areas from Monterey County to Curry County
in southern Oregon (Rizzo & Garbelotto, 2003), and hosts for
the disease exist across both states and exist elsewhere
nationally. The disease was first reported in 1995 in Marin
County, CA and forests there, including the mixed hardwood
forests found in China Camp State Park (CCSP) display
extensive overstory mortality of coast live oaks and black oaks
(Kelly et al., 2004a,b; Rizzo & Garbelotto, 2003).
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Spatial pattern is one of the most fundamental properties of
disease dynamics because it reflects the environmental forces
acting on the dispersal and life cycles of a pathogen (Ristaino &
Gumpertz, 2000). For this reason, researchers of plant disease
epidemics are increasingly using landscape approaches to
quantify and model spatial patterns of disease spread in order
to understand the basic factors that influence pathogen dispersal
and infection processes (Holdenrieder et al., 2004; Wulder et al.,
2004). Remote sensing is often used in this context, and while
remotely sensed approaches to monitoring individual tree health
were developed earlier in temperate conifer forests, examples of
such work in other forest systems, including hardwood forests
are increasing (Asner et al., 2004; Boyer et al., 1988; Clark et
al., 2004a,b; Everitt et al., 1999; Gong et al., 1999; Key et al.,
2001; Muchoney & Haack, 1994). While remote sensing may
not be able to discern the cause of death of a tree, a remote
approach to mapping mortality in a forest facing an epidemic
remains important for disease monitoring, epidemiology and
pathology. Therefore, it is desirable to develop an automated
remote sensing monitoring approach based on multi-temporal
high spatial resolution imagery.

Previous efforts in mapping the oak mortality dynamics
through classifying multi-temporal high spatial resolution
imagery were mainly focused on non-contextual classification
algorithms, for example, maximum likelihood classification
and ISODATA clustering (Kelly, 2002; Kelly et al., 2004a). The
initial results indicated that these algorithms were insufficient
to generate consistently satisfactory results because of several
complicating factors associated with the vegetation being
mapped (Kelly, 2002; Kelly et al., 2004a). First, there exists
considerable spectral confusion between dead trees and bare
areas, especially for bare areas at forest edges, where grass,
other understory vegetation and bare soils are mixed. As a
result, some bare areas can be misclassified as dead trees.
Second, seasonal differences in phenology have also been
problematic when mapping hardwood mortality through time.
Specifically, when imagery is collected at the time that
deciduous oaks have leafed out with immature leaves, the
leaves, while green, still have a depressed NIR reflectance.
Thus deciduous oaks (primarily valley oaks) can appear very
similar to dead trees in classification routines, resulting in
commission errors. Third, as a result of non-contextual
classification with high spatial resolution imagery, the classi-
fication maps included segmented and isolated pixels. These
problems in classification are compounded when comparing
classification results from two time periods. Considerable
artifacts and spurious changes can be observed due to
independent classification errors and registration errors,
which make the subsequent landscape level spatial–temporal
dynamics analysis unreliable and difficult.

The technical limitations of conventional approaches for
mapping SOD dynamics with high spatial resolution imagery
can be attributed to their simplified assumptions: spatial
independence among individual pixels and temporal indepen-
dence between images from different dates. With these
assumptions, multiple image series from different time periods
are separately processed without referring to any useful temporal

relation, and individual pixels on each image are independently
treated without considering their spatial association (Kelly,
2002; Kelly et al., 2004a). However, on high spatial resolution
imagery, spatially neighboring pixels tend to belong to the same
class or some compatible classes with an ecological association.
For a series of multiple images, temporally neighboring pixels
(Refer to Section 2.2) are related to each other through
phenology, land use, or other rationales. Therefore, pixels on
multi-temporal high spatial resolution imagery show dependen-
cies in both the spatial and temporal domains. Ignoring such
spatial–temporal dependencies associated with multi-temporal
high spatial resolution imagery does not maximize the
information contained in the datasets and may result in an
unsatisfactory classification result. This is especially true when
spectral information has limited discriminative power where
spatial–temporal dependencies can help to remove the spectral
confusion. Therefore, it is likely that by modeling spatial–
temporal dependencies in the classification process the accuracy
of the classifiedmapwill be increased due to the incorporation of
complimentary contextual information.

The use of either spatial or temporal information in remote
sensing imagery has been extensively explored and shown to
generate improved results over methods based on spectral data
alone (Bruzzone & Smits, 2001; Gong & Xu, 2003; Richards &
Jia, 1999). In contrast, the use of both spatial and temporal
information is rather limited (Jeon & Landgrebe, 1999; Liu et
al., 2005; Melgani & Serpico, 2003; Solberg et al., 1996). For
monitoring the dynamics of SOD, a spatial–temporal approach
is necessary, considering the high spatial resolution of the data
and the multi-temporal nature of the problem. In this paper, we
propose a spatial–temporally explicit algorithm based on
Markov Random Fields (MRF) and Support Vector Machines
(SVM) to classify multi-temporal images simultaneously for
SOD dynamics monitoring. We have two objectives: 1)
developing a new spatial–temporal classification method for
the use of multi-temporal remote sensing data and comparing it
with conventional non-contextual approaches, 2) applying the
new method in a case study of monitoring the dynamics of SOD
and discussing the broader application of this new method. The
reminder of the paper is organized as follows. In Section 2, we
provide some theoretical background on SVM and MRF, which
are the building blocks of our proposed algorithm. In Section 3,
we describe the study site and data. In Section 4, we present our
spatial–temporally explicit algorithm. In Sections 5 and 6, we
show the results and together with some discussion on several
important issues. We conclude in Section 7.

2. Theoretical background

2.1. Support Vector Machines

Support Vector Machines (SVM) are kernel-based learning
classifiers built on statistical learning theory (Burges, 1998;
Cristianini & Shawe-Taylor, 2001; Vapnik, 1998). SVM are
trained to find the optimal classification hyperplane minimizing
an upper bound of the generalization error. This makes SVM
more attractive than other classifiers in a broad range of

168 D. Liu et al. / Remote Sensing of Environment 101 (2006) 167–180



applications. For remotely sensed imagery, SVM have been
found to be competitive with the best available machine
learning algorithms in classifying high-dimensional data sets
(Huang et al., 2002).

Considering a binary classification problem, the training
samples consist of a data set

fðxi; yiÞjxiaRd; yiaf−1; 1g; i ¼ 1; N ; ng

where xi is a d-dimensional vector and yi is the corresponding
class label. A supervised training algorithm aims to find a
decision function

gðxÞ ¼ signðf ðxÞÞ ð1Þ

from the known training samples based on certain learning
rules. For linearly separable cases, a linear SVM is designed to
derive an optimal linear discriminant function

f ðxÞ ¼ wTxþ b ð2Þ

where w=[w1,w2,…,wd]
T is the weight vector and b is a bias

term. The linear separating hyperplane is characterized by
wTx+b=0. The weight vector w is optimized so that the
margin between linear boundary wTx+b=1 and wTx+b=−1
is maximized. Mathematically, the primal optimization
problem is formulated as:

w4 ¼ argmin
w

1
2
twt2

! "
subject to fyiðwTxi þ bÞz1; i ¼ 1; 2 N ; ng:

ð3Þ

Using Lagrange formulation, the optimal discriminant func-
tion can be expressed in terms of Lagrangian dual variables αi:

f ðxÞ ¼
X

iaSV

aiyihxi; xi þ b ð4Þ

where SV (Support Vector) is the set of training samples with
associated dual variables αi satisfying αiN0.

For linearly nonseparable cases, slack variables ξi(i=1,2,…,
n) are introduced to penalize the misclassification errors and
relax the hard constraints in Eq. (3), then the primal
optimization problem becomes

w4 ¼ argmin
w

1
2
twt2 þ C

Xn

i¼1

ni

( )

subject to fyiðwTxi þ bÞz1−ni; i ¼ 1; 2; N ; ng: ð5Þ

With Lagrange formulation, the same form of optimal
discriminant function as in Eq. (4) can be obtained except that
the Lagrangian dual variables αi are enforced with an upper
bound C, the regularization parameter. In these cases, the
support vectors consist of a subset of training samples with
associated dual variables αi satisfying 0bαibC.

In cases of nonlinear classification boundaries, the above
formulations are generalized to their nonlinear counterparts by
transforming the original input space nonlinearly to a higher
dimensional feature space where linear methods may be

applied. In doing so, a kernel trick is introduced into SVM so
that the discriminant function in Eq. (4) becomes:

f ðxÞ ¼
X

iaSV

aiyiKðxi; xÞ þ b ð6Þ

By substituting the standard dot product 〈xi, x〉 with a kernel
function K(xi,x), SVM implicitly map the original data from the
input space Rd to a higher dimensional feature space H via a
nonlinear mapping function φ such that

Kðxi; xÞ ¼ huðxiÞ;uðxÞi ð7Þ

In this way, SVM find an optimal linear hyperplane in a
higher dimensional feature space that is nonlinear in the original
input space. The kernel trick avoids the direct evaluation of the
dot product in the higher dimensional feature space by
computing it via kernel function with data vectors in the input
space. A valid kernel function must obey the Mercer's theorem.
Commonly used kernel functions include Gaussian kernel (with
parameter γ)

Kðxi; xÞ ¼ expð−ctxi−xt2Þ ð8Þ

and polynomial kernel (with parameter d)

Kðxi; xÞ ¼ ðhxi; xi þ 1Þd: ð9Þ

When k (N2) classes are concerned, two basic methods are
available to convert a binary classification to k-class classifi-
cation using SVM. In the “one against all” approach, k binary
SVM are trained between each class and the remaining classes
with the classification labeled to the class with maximum
discriminant function. In the “one against one” approach, k(k−
1) /2 binary SVM are trained between each pair of classes with
the classification labeled to the class with maximum votes.

The probabilistic estimates of SVM outputs are necessary if
SVM is used to make partial decisions and the classification
outputs need to be combined with other evidence (Platt, 2000).
For binary SVM, a sigmoid function can be fitted to the
discriminant function (Platt, 2000). For multi-class SVM, soft-
max combination can be applied to “one against all” SVM
outputs (Duan et al., 2003), and pairwise coupling of binary
probabilistic estimates can be applied to “one against one” SVM
outputs (Wu et al., 2004).

2.2. Markov Random Fields

Markov Random Fields (MRF) are commonly used
probabilistic models for image analysis (Dubes & Jain, 1989;
Li, 2001). The basic idea of MRF is to model the contextual
correlation among image pixels in terms of conditional prior
probabilities of individual pixels given their neighboring pixels.
Based on Hammersley–Clifford theorem, the joint distribution
of these conditional prior probabilities modeled by MRFs is
equivalent to a joint prior probability characterized by a Gibbs
distribution (Li, 2001). This MRFs–Gibbs equivalence allows
us to model the complex global contextual relationship of an
entire image by using MRFs of local pixel neighborhoods,
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which make MRF computationally tractable and as a very
popular contextual model.

Given a neighborhood system N (Fig. 1a), the spatial
neighbors for a given pixel i are defined as NS(i). Let c(i), c(NS

(i)) denote the class of pixel i and class vector of its spatial
neighbors NS(i) respectively. Then an MRF models the spatial
dependence of neighboring pixels as a conditional prior
probability of a pixel as:

PðcðiÞjcðNSðiÞÞÞ ¼
1
Z
exp

n
−USðcðiÞ; cðNSðiÞÞÞ

o
ð10Þ

where Z is the normalizing constant; US is the spatial energy
function. The energy function US can be characterized as:

USðcðiÞ; cðNSðiÞÞÞ ¼ bS
X

jaNSðiÞ
−IðcðiÞ; cðjÞÞ ð11Þ

where βS is a non-negative parameter controlling the spatial
dependence; I is equal to 1 if c(i)=c(j) and 0 otherwise.

When multi-temporal image series are observed, MRF can
be extended to include temporal dependences of pixels by
adding a temporal energy function (Melgani & Serpico, 2003;
Solberg et al., 1996). Suppose two image series are observed at
time T1 and T2(T1bT2). Assuming a second-order neighbor-
hood system N (Fig. 1b), the temporal neighbors for a given
pixel i are defined as NT(i). At time T1, let c1(i), c1(NS(i)), c2(NT

(i)) denote the class of a pixel i at time T1, class vector of its
spatial neighbors NS(i) at time T1, and class vector of its
temporal neighbors NT(i) at time T2, respectively. Notations for
time T2 can be similarly defined. Then the spatial–temporal
dependence of a pixel i at time T1 given its spatial–temporal
neighboring pixels is modeled as a conditional prior distribution
by characterizing mutual influences among pixels as

Pðc1ðiÞjc1ðNSðiÞÞ; c2ðNT ðiÞÞÞ

¼ 1
Z
expf−Uðc1ðiÞ; c1ðNSðiÞÞ; c2ðNT ðiÞÞÞg ð12Þ

where Z is the normalizing constant; U is the total spatial–
temporal energy function. If space–time interaction is not
assumed, the energy function U can be modeled as the linear

combination of spatial component and temporal component as
in Eq. (13):

Uðc1ðiÞ; c1ðNSðiÞÞ; c2ðNT ðiÞÞÞ
¼ USðc1ðiÞ; c1ðNSðiÞÞÞ þ UT ðc1ðiÞ; c2ðNT ðiÞÞÞ ð13Þ

where the spatial energy function US is defined as before; the
temporal energy function UT can be characterized by temporal
transition probabilities as:

UT ðc1ðiÞ; c2ðNT ðiÞÞÞ ¼ bT
X

jaNT ðiÞ
−Pðc1ðjÞjc2ðjÞÞ ð14Þ

where P(c1(j)|c2(j)) is the transition probability of c2(j)⇒c1(j);
βT is a non-negative parameter controlling the temporal
dependence. The spatial–temporal dependence of a pixel j at
time T2 given its spatial–temporal neighbors can be similarly
defined as analogy to Eqs. (12) (13) and (14).

MRF theory provides a convenient way for modeling the
spatial–temporal contextual information in terms of conditional
prior probabilities. However, MRF itself is not a sufficient
classification rule but a prior model. Based on Bayesian
decision rule, the optimal classification is achieved when the
classification corresponds to maximum a posteriori (MAP). To
achieve optimal classifications, MRF are often used in
conjunction with algorithms estimating class conditional
probabilities through the MAP decision rule. This conjunction
gives rise to the MAP-MRF framework, under which class
conditional probabilities are estimated from the observed
spectral observations and combined with the prior contextual
probabilities via Bayes formula (Li, 2001).

3. Study area and data

Our study area is located in China Camp State Park (122°
29 W, 38°00 N) in Marin County, California. The park is about
600 ha in size, with moderate to steep topography and elevations
ranging from sea level at San Francisco Bay to 290 m.
Vegetation in the park is varied but is dominated by mixed
hardwood forest. We located our 12 ha study area within largely
continuous mixed hardwood forest canopy. Overstory trees in
the area range in age from 100 to 200 years. Coast live (Quercus

NS(i)NS(i)NS(i)
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Y

X 
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N T (i)  N T (i)  N T (i)

N T (i)  N T (i)  N T (i)
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NS(i)NS(i)

NS(i)NS(i)NS(i)

NS(i)NS(i)NS(i)NS(i)

NS(i)NS(i)

Fig. 1. MRF neighborhood systems: (a) spatial neighborhood; (b) spatial–temporal neighborhood. Axes X, Yare the spatial coordinates of pixels. Axis T is the temporal
index of pixels.
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agrifolia), black (Quercus kelloggii) and valley oaks (Quercus
lobata) are common, and occur with mature madrone (Arbutus
menziesii) and California bay (Umbellularia californica) trees.
The understory is comprised of shrubs and small trees and
vines, including manzanita, (Arctostaphylos manzanita), toyon
(Heteromeles arbutifolia), hazel (Corylus cornuta), and buck-
eye (Aesculus californica). All of these plants with the
exception of valley oak are hosts for P. ramorum (McPherson
et al., 2005). We are targeting the two affected Quercus species
(coast live oak and black oak) in this study, along with bare
areas and the forest mosaic. These trees can be resolved using
high-resolution imagery as their individual crowns range in
diameter from 3 m to over 20 m. In addition, as diseased trees
die, the entire crown changes dramatically from healthy green to
brown over a short time period (in most cases) (Rizzo &
Garbelotto, 2003).

Two ADAR 5500 (Airborne Data Acquisition and Registra-
tion) images acquired for the China Camp study area in March
30, 2000 and May 5, 2001 were used in this research. Imagery
was acquired in spring because newly dead oak trees are most
visible at this time, and to avoid mid-summer vegetation
changes that might be confused with oak mortality; buckeye is a
drought-deciduous species and can appear dead in summer. The
ADAR 5500 imaging system is comprised of a SN4, 20 mm
lens with four mounted cameras (spectral bands: band 1 (blue):
450–550 nm, band 2 (green): 520–610 nm, band 3 (red): 610–
700 nm, band 4 (near infrared): 780–920 nm), flown at an
average aircraft altitude of 2205 m. The cameras have a large
field of view (typically about 35° from nadir) and collect high-
spatial resolution data from relatively low altitudes with large
aerial coverage. The average ground spatial resolution of our
imagery is 1 m. Image acquisition and georeferencing were
done by a private company (Positive Systems Inc. of Montana).
The images were mosaicked, color balanced, topographically
corrected, and then georeferenced to UTM projection using
16-cm ortho-photograph with the accuracy around 1 pixel.
Atmospheric correction was not performed because it is not
necessary to image classification (Song et al., 2000). The
mosaicked image was clipped to our study area.

Since our major interest is to map the SOD dynamics across
two years, we adopted the same classification scheme for both
years. Specifically, three general classes to be identified from
the two images are encoded as B (bare areas), D (dead oaks),
and F (forest mosaics). Training and test samples were collected
based on field visits, GPS data, and visual interpretation. All the
dead stems were recorded in the field for the cause of death and
geographic coordinates and identified on the images. Since tree
death from reasons other than SOD is few, we assume all dead
trees as SOD for simplicity.

4. Methods

4.1. Image-to-image registration

Accurate spatial registration of multi-temporal imagery is a
necessity for our spatial–temporally explicit monitoring of SOD
dynamics and subsequent analysis. The high spatial-resolution

airborne ADAR imagery used in this paper had complex local
deformation across different years due to the wide view angle,
the terrain variation, the low flight height, and the effects of
yaw, pitch, and roll (Devereux et al., 1990). These complicating
factors present spatial challenges in aligning multi-temporal
airborne imagery. Spatial registration was performed using
manual control point extraction and global models, with pixel
level accuracies. In this work, we improve upon these results
with an automated method by combining area-based control
point extraction methods with local geometric transformation
models (Liu et al., in press). Specifically, the registration
algorithm was implemented in two steps. First, an area-based
method using correlation coefficient as similarity measure is
applied to extract sufficient numbers of well-located control
points. Second, the extracted control points are fed into a local
transformation model, piecewise linear function, to register
multi-temporal airborne images. More details are provided in
Liu et al. (in press).

4.2. Specification of spatial energy function

The spatial energy function as introduced in Eq. (11)
encourages neighboring pixels to be classified with the same
labels and thus imposes a spatial smoothness effect on final
classification. In general, this is a desirable prior model to avoid
the “salt-and-pepper” effect inherent in non-contextual classi-
fications. However, this general spatial energy function has
limitations when spectral confusion exists between spatially
smooth regions. Under such a circumstance, spatially neigh-
boring pixels could be misclassified consistently so that the
prior smoothness model does not provide any additional
information to correct the spectral confusion. In particular in
our study area, considerable spectral confusion exists between
dead trees and bare areas. The spectral confusion resulted in
misclassified pixels clustering in space. This made the general
spatial energy function less useful.

In our spatial–temporal approach, the spatial energy function
consists of two types of spatial relationships: spatial association
and spatial exclusion. By spatial association, the algorithm
favors two allocations: 1) spatially neighboring pixels in
homogenous region being classified into the same class, and
2) spatially neighboring pixels in the boundary region being
classified into ecologically compatible classes. This impacts a
smoothing effect on the final classified map by screening out the
isolated pixels in homogenous regions, yet keeping the
boundary of different ground cover types in boundary region.
With spatial exclusion, the algorithm penalizes the allocation
that neighboring pixels are classified into ecologically incom-
patible classes. Specifically, the spatial energy function
involved in MRF is specified in Eq. (15)

USðcðiÞ; cðNSðiÞÞÞ ¼ bA
X

jaNSðiÞ
AðcðiÞ; cðjÞÞ

þ bE
X

jaNSðiÞ
EðcðiÞ; cðjÞÞ ð15Þ

where βA, βE are parameters associated with spatial association
and spatial exclusion; A(c(i),c(j)) is the association factor
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between class c(i) and class c(j). A(c(i),c(j)) and E(c(i),c(j)) are
defined as in Eqs. (16) and (17) respectively:

AðcðiÞ; cðjÞÞ ¼ −1; if cðiÞ ¼ cðjÞ
0; if cðiÞ p cðjÞ

!
ð16Þ

EðcðiÞ; cðjÞÞ

¼ 1; if cðiÞ is incompatible with cðjÞ
0; if cðiÞ is compatible with cðjÞ :

!
ð17Þ

In the case of SOD, the occurrence of dead trees is associated
with suitable forest environment because the spread of the
disease is related to the distance from foliar hosts to target trees
(Kelly & Meentemeyer, 2002; Rizzo & Garbelotto, 2003).
Therefore, if pixels classified as dead trees are isolated from the
forest mosaic by bare areas, they are assumed to be ecologically
incompatible. Since dead trees are often overpredicted from bare
areas, if we penalize the classification of dead trees in the
neighborhood of bare areas through the spatial exclusion
between dead trees and bare areas, we can correct the
commission errors of dead trees from bare areas. In doing so,
we define c(i)=D is incompatible with c(j)=B for j∈NS(i). The
specific configurations involved in Eq. (15) are summarized in
Table 1 (a).

4.3. Specification of temporal energy function

The temporal energy function defined in Eq. (14) can be
understood as imposing a prior spatial smoothness indirectly
from temporal neighbors. As the identity function suggests,
spatial neighbors contribute to the spatial energy function in Eq.
(11) in a crisp or discrete sense. In contrast, the temporal
neighbors contribute to the energy function in a probabilistic

sense, which is specified by transition probabilities P(c1(j)=c1|
c2(j)=c2). The larger P(c1(j)=c1|c2(j)=c2), the more probable
that pixel j at T1 will be labeled j given pixel j at T2 being labeled
as c2; and thus the more supports to pixel i at T1 being labeled as
c1 is transferred indirectly from c2(j) through c1(j). Similarly, as
there are limitations of spatial energy function to spectral
confusion, the general temporal energy function in Eq. (14) also
has limitations when the following two conditions are met: 1)
spectral confusion exists between two classes c1 and c2 at T1;
and 2) c1 or c2 has prohibitive transition probability to another
class c3 at T2. The limitation is originated from the transition
probability model. Since the probability of any event is always
greater than or equal to zero, when the prohibitive transition
c1⇒c3 or c2⇒c3 happens, the probability of this transition is
set to zero in Eq. (14). As a result, the prohibitive transition will
have zero contributions to the final energy function, and only
the prior spatial smoothness is posed on the final classification.
The spectral confusion still remains and the prohibitive
transition could appear in the final classifications. However, if
the prohibitive transition were penalized in terms of negative
contribution, it is possible to be used as complimentary
information to solve the spectral confusion.

In our proposed spatial–temporal approach, the temporal
energy function is characterized by two components: temporal
relation and temporal exclusion. Temporal relation is modeled
by a transition probability matrix which defines the probability
of one pixel belonging to one land cover type at time T1 given
that it belongs to another cover type at time T2. By temporal
relation, the algorithm favors the allocation: 1) temporal
neighboring pixels being classified into the same class if no
change happens, and 2) temporal neighboring pixels being
classified into ecologically compatible classes if a change
happens. Since land cover change also satisfies spatial
dependence, temporal relation will have a smoothing effect on
the final change map by screening out the isolated change pixels
in homogenous regions, yet keeping the boundary of different
ground cover types in heterogeneous regions. By temporal
exclusion, the algorithm penalizes the allocation: temporal
neighboring pixels being classified into ecologically incompat-
ible classes. This will discourage prohibitive transitions in the
final classification map. Specifically, the temporal energy
function in MRF model is formulated in Eq. (18):

UT ðc1ðiÞ; c2ðNT ðiÞÞÞ ¼ cC
X

jaNT ðiÞ
−Pðc1ðiÞjc2ðjÞÞ

þ cE
X

jaNT ðiÞ
Iðc1ðiÞ£c2ðjÞÞ ð18Þ

where γC, γE are parameters associated with temporal relation
and temporal exclusion; P(c1(i)|c2(j)) is the temporal transition
probability from class c1(i) to class c2(ij); I(c1(i))⇏c2(j)) is 1
if the transition from c1(i) to c2(j) is prohibitive and 0
otherwise.

Based on our field investigation, no dead trees were removed
in the study area during our time frame so dead trees at T1 can be
assumed to be dead at T2. If pixels classified as dead trees at T1
are classified as forest or bare areas at T2, they are assumed to be

Table 1
Configurations of spatial and temporal energy functions

(a) Spatial energy function for both years

c(j) B D F

c(i)

B −βA 0 0
D βE −βA 0
F 0 0 −βA

(b) Temporal energy function for year 2000

2001 B D F

2000

B −γCP(B⇒B) 0 −γCP(B⇒F)
D γE −γCP(D⇒D) γE
F −γCP(F⇒B) −γCP(F⇒D) −γCP(F⇒F)

(c) Temporal energy function for year 2001

2000 B D F

2001

B −γCP(B⇒B) 0 −γCP(F⇒B)
D γE −γCP(D⇒D) −γCP(F⇒D)
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ecologically incompatible and the corresponding classification
should be prohibited. Moreover, it is clear that bare areas at T1
could not become dead trees at T2. Therefore, there are three
types of prohibitive transitions: (1) B⇒D, (2) D⇒B, and (3)
D⇒F. By enforcing temporal exclusion for the three
prohibitive transitions, we can correct the commission errors
of dead trees from deciduous oaks at T1 and the spectral
confusion between bare areas and dead oaks at T1 and T2. The
specific configurations involved in Eq. (18) are summarized in
Table 1 (b) and (c).

4.4. Spatial–temporal classification

The spatial and temporal energy functions specified in
Sections 4.2 and 4.3 are the key parts of the MRF models. In the
following, we develop our spatial–temporal classification
algorithm based on these elements. The basic idea of the
proposed algorithm is to simultaneously classify multi-temporal
imagery by integrating the contributions from spectral obser-
vation of 4-spectral bands in ADAR images and spatial–
temporal information among image pixels. Firstly, the spectral
observation is the direct information source and the major
evidence for classification in this algorithm. The most common
statistical model used in spectral observation is that the class
conditional probability (also called likelihood) of the observed
spectral data is assumed to have a Gaussian distribution. Under
such an assumption, maximum likelihood classification (MLC)
algorithm is derived if no proper prior models are adopted.
However, normal distribution assumption is sometimes inade-
quate to account for the possible multi-mode or skewed
distribution. Alternatively, we propose to estimate the spectral
likelihood using SVM for its free assumption and ability to find
complex classification boundaries with good generalization
performance as demonstrated by Liu et al. (2005). Secondly, the

spatial–temporal information serves two purposes in the
proposed algorithm: 1) it provides complimentary information
to spectral observation so that spectral confusion can be solved;
and 2) it enforces constraints and regulations to adjust the
spectral evidence so that the final classification could satisfy
spatial–temporal dependence. In doing so, we model the
spatial–temporal information in terms of conditional priors
using MRF, within which the spatial and temporal dependence
can be easily transformed into proper energy functions. Thirdly,
the likelihood estimates of spectral observation from SVM and
conditional spatial–temporal priors from MRF are integrated
into posterior estimates by Bayes rule. In this manner, the
spatial–temporally explicit classification algorithm combines
the strength of SVM in spectral observation and effectiveness of
MRF in spatial–temporal information, and the spectral, spatial,
and temporal components of multi-temporal imagery are
effectively unified.

Mathematically, the MAP-MRF framework is adopted to
integrate spectral contributions modeled by SVM and spatial–
temporal contributions modeled by MRF along the following
lines. Assuming that a second order neighborhood system
(Fig. 1b) and conditional independence of the spectral
probability distribution, the posterior probability of pixel i
belonging to class c1(i) given the observed spectral value d1(i)
and its spatial–temporal neighbors (c1(NS(i)) and c2(NT(i)) ) is
formulated as:

Pðc1ðiÞjd1ðiÞ; c1ðNSðiÞÞ; c2ðNT ðiÞÞÞ~Pðd1ðiÞjc1ðiÞÞ
% Pðc1ðiÞjc1ðNSðiÞÞ; c2ðNT ðiÞÞÞ

¼ 1
Z
expf−½USpectral þ UContextual'g ð19Þ

where USpectral is the energy function from the observed spectral
data and USpectral =− ln(P(d1(i)|c1(i))), in which P(d1(i)|c1(i)) is

Classification
(intermediate) Probability  

2000

No No

Yes

SVM

Conditional
Probability

Classification
(intermediate)

ConditionalClassification
(intermediate)

Converge?Converge?

2001

Yes

Initialization

MAP-MRFMAP-MRF

ADAR ImageADAR Image

Classification
(Final)

Classification
(Final)

SVM

Initialization

Fig. 2. The flowchart of the spatial–temporal explicit algorithm.
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estimated by pairwise coupling of probabilistic estimates from
“one against one” SVM outputs (Wu et al., 2004); and
UContextual =US+UT is the energy function from spatial–
temporal contextual information with US defined in Eq. (15)
and UT defined in Eq. (18). Since Z is constant for all classes,
the MAP solution in Eq. (19) leads to the minimization of the
sum of two energy functions as in Eq. (20).

c4i ðiÞ ¼ argMin
c
fUSpectral þ UContextualg: ð20Þ

Theoretically, the optimal solution of Eq. (20) should be
obtained by simultaneously minimizing the sum of two energy
functions for all pixels. Global optimization algorithms such as
Simulated Annealing (SA) (Geman & Geman, 1984) and
Maximum a Posterior Margin (MPM) (Marroquin et al., 1987)
are available to get the optimal solution. However, these
algorithms are computationally demanding in general. Instead, a
simple and computationally less demanding algorithm called
Iterative Conditional Modes (ICM) is used to obtain a sub-
optimal solution (Besag, 1986). The spatial smoothing weight
and temporal transition weight are determined by cross-
validation. The transition probabilities are iteratively estimated
from the classified images. The spatial and temporal exclusion
penalty terms are heuristically determined as long as they are
large enough to penalize the spatially and temporally incom-
patible classification.

The implementation of the proposed spatial–temporally
explicit classification algorithm is illustrated in Fig. 2. The
algorithm consists of the following two stages: initialization
and iteration. In the initialization stage, SVM is trained with
the spectral observations to allocate initial class labels and
estimate pixel-wise class conditional probabilities for each
individual image. In the iteration stage, first, MRF are used to
model spatial–temporal contextual prior probabilities of
images based on the intermediate classification from the
previous iteration; next, the conditional probability estimates
from SVM and prior probabilities from MRF are converted
into appropriate energy functions and unified under the MAP–
MRF framework; following that, the classification is updated
based on the combination of spectral class conditional
probability and spatial–temporal contextual prior probabilities;
and finally, the iteration proceeds until the predefined
convergence rate is met.

4.5. Accuracy assessment

Accuracy assessments were performed for the classifications
based on the ground truth data reserved for this purpose. The
ground truth data for accuracy assessments were randomly
generated based on visual interpretation, field visits, and GPS
data. These testing data are representative of the full range of the
classes and are independent of the training data. The amount of
the testing data for each class can be found in Tables 3 and 4.
Error matrices or confusion matrices were generated for all the
classifications with different algorithms. Producer's accuracy
(probability of a reference pixel being correctly classified),
user's accuracy (probability that a pixel classified on the final

product represents that category on the ground), overall
accuracy, and a Kappa coefficient were derived from each
error matrix. The significances in the difference between
different classifications were also evaluated based on the
Kappa coefficients and their corresponding variance estimates.

5. Results

5.1. Image-to-image registration

The image of 2001 was registered to that of 2000 using a
piecewise linear transformation model with the control points
automatically extracted from an area-based method. The control
points were evenly arranged on regular grids with a grid size of
30 pixels. In total, 100 control points were generated
automatically. The registration error was estimated based on
15 independent control points as check points selected ma-
nually. The RMSE (root mean squared errors) is 0.43-pixel,
which is significantly better than the previous results from
second polynomial transformation model (larger than 2-pixel).

5.2. Non-contextual classification

The initial results of non-contextual classifications are
reported here for two purposes: 1) they are the initializations
of subsequent spatial–temporal classifications; and 2) they
will be used as benchmark for comparison with our spatial–
temporal methods. For each year, we trained a SVM classifier
with a Gaussian kernel function using data from all four
bands. This classifier involved two parameters: the penalty
term C and the Gaussian smoothing parameter γ. We found
the optimal values (Table 2) for the two parameters by using a
5-fold cross-validation method. The initial non-contextual
classification maps were shown in Fig. 4 (a)–(b). For
comparison, we also implemented MLC for non-contextual
classification. The classification maps were shown in Fig. 3
(a)–(b). The accuracy assessments of all the classifications are
presented in terms of several measures based on the
independent test samples (Table 3). The comparison of the
classification maps between MLC and SVM is reported in
Table 5.

For the image of 2000, the non-contextual MLC resulted in
moderate accuracy (overall: 80.1%, Table 3) with considerable
“speckles”. However, as mentioned in the introduction, the
user's accuracy of dead oaks (47.7%, Table 3) is low due to two
types of commissions: 1) spectral confusion with bare areas, and

Table 2
Parameters for SVM classifiers and MRF models

Parameter Image of 2000 Image of 2001

SVM C 100 1000
γ 50 30

MRF βA 0.85 0.7
βE 10 10
γA 0.6 0.5
γE 10 10

174 D. Liu et al. / Remote Sensing of Environment 101 (2006) 167–180



2) confusion with deciduous oak caused by seasonality. As
shown in Fig. 3 (a)–(b), the commissions from bare areas are
mostly distributed along the edges between forest and bare
areas, where grass and other understory vegetation and bare
areas are mixed to appear spectrally more similar to dead
crowns than the other two classes. The commissions from
deciduous oaks are mainly located at the central north part of the
study area, which can be observed by comparing with the
classification map of 2001. Non-contextual SVM performed
moderately well (overall: 87.4%; user's accuracy for dead:
60.8%, Table 3) producing fewer speckles. This result was
significantly better than MLC (Table 5). It had less commission
errors from bare areas, but there was still considerable confusion
between dead and deciduous forest (Fig. 4 (a)–(b)). The better
performance of SVM may be attributed to its good generaliza-
tion ability and non-parametric nature of the statistical learning
rule whereas the normal distribution assumption of MLC may
not be satisfied for forest and bare areas, which exhibit multi-
mode distribution. For image of 2001, similar results were
obtained except that commission errors of dead oaks were
mainly from bare areas because the deciduous oaks were not
fully leafed out at the time of imaging and were successfully
classified to forest.

The classified transitions from year 2000 to year 2001 were
identified by overlaying the two classified images from non-
contextual algorithms (Fig. 5 (a), (c)). With three land cover
types {B, D, F}, there are six types of possible land cover
transitions from one type in 2000 to another in 2001: {BD, BF,
DB, DF, FB, FD}. Among the six transitions, three transitions
{BD, DB, DF} are prohibitive. On the classified transition map
from non-contextual MLC (Fig. 5-(a)), the three prohibitive
transitions were visible across the whole image due to the
misclassification. In particular, considerable DF transition (in
yellow color) was caused by the spectral confusion between
deciduous oaks and dead crowns. Comparatively, fewer
prohibitive transitions were shown on the classified transition
map from non-contextual SVM (Fig. 5-(c)).

5.3. Spatial–temporal classification

The spatial–temporal classification algorithms started on the
basis of the initial non-contextual classifications as reported
above. The spectral conditional probabilities from SVM or
MLC were integrated with spatial–temporal contextual infor-
mation under the framework of MAP–MRF, which is
characterized by parameters listed in Table 2. The MAP–

(a)

(c)

(b)

(d) 

Fig. 3. Classified images usingMLC based methods where B (Bare areas), D (Dead oaks), and F (Forest mosaics) are represented in black, white and gray respectively:
(a) non-contextual MLC (2000); (b) non-contextual MLC (2001); (c) spatial–temporal MLC (2000); and (d) spatial–temporal MLC (2001).
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MRF was solved iteratively using the ICM algorithm. As Fig. 6
illustrated, ICM converged with a convergence rate below
threshold 0.005% in 7 iterations. The final spatial–temporal
classification maps were shown in Figs. 3 (c)–(d) and 4 (c)–(d).
The accuracy assessments of all the classifications are
summarized in Table 4. The comparison of the classification
maps between contextual MLC and contextual SVM is reported
in Table 5.

For the image of 2000, the spatial–temporal contextual
classification based on both MLC and SVM improved upon the
initial non-contextual classification (MLC: overall accuracy
improved from 80.1% to 87.2%; user's accuracy of dead im-
proved from 47.7% to 58.0%. SVM: overall accuracy improved
from 87.4% to 95.9%; user's accuracy of dead improved from
60.8% to 89.8%, Table 4). The improvements were significant
(Table 5). The improvements were also illustrated by the
reduction of speckles due to spatial smoothing (Figs. 3 and 4).
With the incorporation of spatial exclusion, the commissions
from bare areas along the edges between forest and bare areas
were dramatically reduced. The commission errors from
deciduous oaks were also corrected with the temporal exclusion
from 2001 image. In comparison with the MLC based spatial–
temporal classification, SVM based classifications performed
significantly better (Table 4) with less commission errors from
bare areas and deciduous forest. For the 2001 image, similar
results were observed.

By overlaying the two classified images, we got the
classified transition maps from year 2000 to year 2001 with
the incorporation of spatial–temporal information (Fig. 5 (b),
(d)). On the classified transition maps from both spatial–
temporal MLC (Fig. 5-(b)) and spatial–temporal SVM (Fig. 5-
(d)), the three prohibitive transitions have been dramatically
reduced compared to their non-contextual counterparts. Specif-
ically, the bare-to-dead (BD: in red) transition was nearly
invisible. The dead-to-bare (DB: in blue) and dead-to-forest
(DF: in yellow) transitions were largely removed and converted
to no change. These improvements are apparently due to the
added temporal exclusions.

6. Discussion

In this paper, we developed a new spatial–temporally
explicit classification algorithm using ADAR imagery from
two dates in an attempt to improve upon non-contextual
methods for forest disease monitoring. The classification
errors caused by spectral confusions between dead oaks with
bare areas and healthy deciduous oaks (in year 2000) are
largely reduced with the incorporation of the spatial–temporal
information in the classification. This is clearly evident in the
correction in ecologically incompatible allocation of dead
trees at the bare areas shown in Fig. 4 (c)–(d) and in the
reduction in less likely transitions bare-to-dead (BD: in red),

Table 3
Accuracy matrices for non-contextual classifications

Reference

Classified Bare Dead Forest User's

Non-Contextual MLC Image of 2000 Bare 893 5 91 989 90.3%
Dead 186 865 761 1812 47.7%
Forest 0 3 2441 2444 99.8%

1079 873 3293 5245
Producer's 82.8% 99.1% 74.1% Overall 80.1%

Khat 0.67
Z 0.000079

Image of 2001 Bare 786 12 2 800 98.3%
Dead 430 1152 746 2328 49.5%
Forest 2 0 2450 2452 99.9%

1218 1164 3198 5580
Producer's 64.5% 98.9% 76.6% Overall 78.6%

Khat 0.66
Z 0.000071

Non-Contextual SVM Image of 2000 Bare 920 11 73 1004 91.6%
Dead 142 845 403 1390 60.8%
Forest 17 17 2817 2851 98.8%

1079 873 3293 5245
Producer's 85.3% 96.8% 85.6% Overall 87.4%

Khat 0.78
Z 0.000061

Image of 2001 Bare 884 11 6 901 98.1%
Dead 322 1150 402 1874 61.4%
Forest 12 3 2790 2805 99.5%

1218 1164 3198 5580
Producer's 72.6% 98.8% 87.2% Overall 86.5%

Khat 0.78
Z 0.000053

Bold numbers indicate results are significantly better than random chance at the 95% confidence level.

176 D. Liu et al. / Remote Sensing of Environment 101 (2006) 167–180



dead-to-bare (DB: in blue), and dead-to-forest (DF: in yellow)
shown in Fig. 5. The larger clumps of forest-to-dead (FD: in
cyan) are our real target: these are clumped pixels that
changed from healthy trees to dead crowns. These clumps can
be used to further model the spatial pattern of disease through
a forest stand. The remaining sparsely distributed dead-to-
forest (DF: in yellow) and forest-to-dead (FD: in cyan)
transitions are found in linear curves that correspond to
canopy edges. There are three possible sources of these linear
shapes: 1) errors in registration, 2) classification errors at the
canopy edges where spectral uncertainty exists due to mixed
pixel effects, and 3) morphological change of canopy shape.
To get clearer transition map, post-processing such as spatial
filtering could be applied to remove these spurious artifacts.
Further improvement of the algorithm is needed to reduce
these artifacts.

Spatial smoothing, as a general rule for spatial dependence,
is widely used in traditional classification models for the use
of spatial contextual information. However, while spatial
smoothing can reduce “speckle” found in traditional pixel-
based classification, it is unable to remove misclassifications
created by ecologically incompatible but spatially smooth
classification results. We thus introduced a spatial exclusion

rule to correct those spatially smooth but ecologically
incompatible classification. Spatial exclusion has been less
frequently examined than has spatial smoothing in remote
sensing contextual classification. Spatial exclusion is more
domain-specific and can be used as a way to encode an
expert's knowledge about the study area. From the results of
this study, we demonstrated an example of the principles
underlying the incorporation of spatial exclusion in the
classification algorithms. More examples can be developed
in different applications. For example, in land use classifica-
tion, the spatial exclusion can be established based on the
social and economic factors underlying different land use
patterns. In vegetation species classification, the alliance
relationship, ecological and topological knowledge can be
used in characterizing spatial exclusion rules.

We also used temporal dependence to relate images from
two dates. Our proposed algorithm can be generalized to
larger image series. When three or more images are
considered, one image can be linked with its past neighboring
image and its future neighboring image if a Markov property
is assumed. The classification maps are simultaneously
updated across three or more images. The phenological
correction used in our application just provides one example

(a)

(c) 

(b) 

(d)

Fig. 4. Classified images using SVM based methods where B (Bare areas), D (Dead oaks), and F (Forest mosaics) are represented in black, white and gray respectively:
(a) non-contextual SVM (2000); (b) non-contextual SVM (2001); (c) spatial–temporal SVM (2000); and (d) spatial–temporal SVM (2001).
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demonstrating how temporal information can be used to solve
cases of spectral confusion. More specific application can be
designed to encode temporal relations into specific allocation
rules. Specifically, changes can be related to land use history,

fire inventory and vegetation phenology and we can use these
ancillary information to establish temporal relation among
different image series. For example, in Liu et al. (2005), a fire
perimeter layer is used to link the land cover transition before
and after fires; in Aurdal et al. (2005), a phenology model
based on Markov chain is used to integrate multi-temporal
TM imagery.

Overall, our ability to extract in an automated fashion the
tree canopy that changes from healthy to dead, while
excluding other less likely transitions will contribute to
further spatial–temporal analysis of disease dynamics and
landscape disease modeling. This work using a spatial–
temporally explicit algorithm in a forest health-monitoring
context has broader applicability across different applications
using multi-temporal remote sensing imagery. The overall
methodology presented in this paper provides a general
framework on the use of spatial–temporal information from
multi-temporal remote sensing data. As such, the new method
is not limited to the specific data and classification scheme as
used in this work. It is possible to use the proposed spatial–
temporal framework to design various multi-temporal moni-
toring projects with different classification schemes (e.g. more
classes) and different types (e.g. hyperspectral imagery) of
imagery. For example, a similar approach has been demon-
strated in Liu et al. (2005) for land cover classification with

Fig. 5. The classified transitions between two years: (a) non-contextual MLC; (b) spatial–temporal MLC; (c) non-contextual SVM; and (d) spatial–temporal SVM.
Notation: NC (No Change), BD (Bare to Dead), BF (Bare to Forest), DB (Dead to Bare), DF (Dead to Forest), FB (Forest to Bare), FD (Forest to Dead).
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nine classes using 30 m TM imagery. However, the spatial–
temporal information might vary its value in different
applications with different spatial resolution and temporal
frequency of images. For example, high spatial resolution
multi-date images might benefit more from the spatial
information than coarse resolution image because the spatial
dependence of pixels at high spatial resolution tends to be
stronger than at low spatial resolution. On the other hand, it is
easier to obtain higher temporal frequency data with coarser
spatial resolution and thus the spatial–temporal classifier
might benefit more from the temporal sources of information
with coarser spatial resolution of data.

7. Conclusions

Our results indicate that a spatial–temporal classification
algorithm that explicitly integrates spectral, spatial and temporal
information in multi-temporal high-spatial resolution images can
achieve significant improvements over non-contextual classifica-
tions, and specific to our case, reduce the commission errors
produced from other land types being classified as dead trees. In
addition, our results also show that SVM performed better in the
processing of spectral data than MLC, and provided better
classification initialization for our spatial–temporal classification.
We have three specific conclusions. First, SVM are promising
algorithms for spectral classification and can be improved with
spatial–temporal information. Second, MRF are efficient probabi-
listic models for the analysis of spatial and temporal contextual
information. And third, the combination of SVM and MRF in a
MAP–MRF framework unifies the strengths of two algorithms and
leads to an improved integration of the spectral, spatial, and temporal
components of multi-temporal remote sensing images. The
improved accuracies generated by the addition of spatial–temporal
contextual information prove the importance of spatial–temporal
modeling to multi-temporal remote sensing.
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