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Abstract

The expansion of urban development into wildland areas can have significant consequences, including an increase in the risk of struc-
tural damage from wildfire. Land-use and land-cover maps can assist decision-makers in targeting and prioritizing risk mitigation activ-
ities, and remote sensing techniques provide effective and efficient methods to create such maps. However, some image processing
approaches may be more appropriate than others in distinguishing land-use and land-cover categories, particularly when classifying high
spatial resolution imagery for urbanizing environments. Here we explore the accuracy of pixel-based and object-based classification
methods used for mapping in the wildland–urban interface (WUI) with free, readily available, high spatial resolution urban imagery,
which is available in many places to municipal and local fire management agencies. Results indicate that an object-based classification
approach provides a higher accuracy than a pixel-based classification approach when distinguishing between the selected land-use and
land-cover categories. For example, an object-based approach resulted in a 41.73% greater accuracy for the built area category, which is
of particular importance to WUI wildfire mitigation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The increased proximity between developed and wild-
land areas that often accompanies new development places
people and homes at risk from wildfire. In California alone,
over five million homes are located in wildland–urban
interface (WUI) areas (Radeloff et al., 2005) and that num-
ber is likely to grow as the state population continues to
increase. Accurate and timely land-use and land-cover
(LULC) maps are needed for wildfire management; maps
are needed before fires happen to model potential risk, dur-
ing fires to assist fire safety personnel in fire-fighting and
evacuation, and after fires to better mitigate the ecological
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consequences of fire. In all cases, it is important to accu-
rately distinguish homes and other features of the built
environment from vegetation across a large geographic
extent. The location of a structure, and its arrangement rel-
ative to other structures or flammable materials, is of key
interest in preventing wildfire-related losses in the WUI
(Cohen 2000; Frontiera & Kearns 2007; Murname 2006).

Over regional scales, LULC maps are typically pro-
duced from remotely sensed image analysis using moderate
resolution satellite imagery such as Landsat TM (Alberti
et al., 2004; Cihlar, 2000; Hollister et al., 2004; Vogelmann
et al., 1998, 2001; Walsh et al., 2001). While these products
are useful for producing coarse-scale classifications, they
are inadequate for detailed mapping (e.g., species-level veg-
etation or buildings) (Harvey & Hill, 2001; Kalliola &
Syrjänen, 1991). LULC maps of urban environments
require finer detail, and utilize either photointerpretation
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or image processing of high-resolution aerial photographs
(Bauer & Steinnocher, 2001; Benediktsson et al., 2003;
Ehlers et al., 2003; Herold, Gardner, et al., 2003; Jensen
& Cowen, 1999; Kettig & Landgrebe, 1976). Freely avail-
able, high spatial resolution aerial imagery is increasingly
accessible to municipal governments, fire management
agencies, and communities. In the US in particular, state
and local governments are acquiring high spatial resolution
imagery to monitor everything from invasive species to
development patterns and making them freely available to
users. These images can be an important resource, particu-
larly for the often under-funded and under-staffed state and
local agencies charged with wildfire mitigation in the WUI
(Thomas et al., 2003). However, photointerpretation, par-
ticularly over large areas, is labor-intensive, subjective,
and often expensive. Therefore, it is important to develop
image-processing techniques that at least partially automate
the process of classifying high-resolution aerial imagery.

While high spatial resolution remote sensing provides
more information than coarse resolution imagery for
detailed mapping, increasingly finer spatial resolution pro-
duces challenges for classic pixel-based techniques such as
Iterative Self-Organizing Data Analysis Technique (ISO-
DATA) and Maximum Likelihood Classifier (MLC); these
methods assume individual pixels on each image are inde-
pendent, and they are treated in the classification algorithm
without considering any spatial association with neighbor-
ing pixels. With high spatial resolution imagery, single pix-
els no longer capture the characteristics of classification
targets (Yu et al., 2006). Instead, adjacent pixels tend to
belong to the same class or some compatible classes with
an ecological or functional association (Liu et al., 2006).
The increase in intra-class spectral variability reduces statis-
tical separability between classes and classification accuracy
is reduced (Yu et al., 2006). The classification results often
show a ‘‘salt-and-pepper” effect, with individual pixels clas-
sified differently from their neighbors (Kelly et al., 2004).

‘‘Object-based” classifiers can be used to overcome these
problems by first segmenting an image into clusters of sim-
ilar neighboring pixels (‘‘objects”), and then classifying the
clusters according to average (or other) spectral properties.
This reduces local spectral variation within objects, and
allows for other contextual and topological relationships
(e.g., ‘‘close to”, ‘‘surrounded by”, ‘‘next to”) to be utilized
in the classification process. Image objects are therefore
basic entities in an image (in our case, roofs, roads, vegeta-
tion, etc.), where each pixel group is composed of similar
digital values, and possesses an intrinsic size, shape, and
geographic and/or ecological relationship within the real-
world scene component it models (Hay et al., 2001). While
this idea has been around for some time (e.g., Kettig &
Landgrebe, 1976), computational power and software
advancements are now making widespread use of this
approach more feasible.

Numerous researchers have used these methods to suc-
cessfully map features with distinct spatial boundaries
(Barlow et al., 2003, 2006; Zhang et al., 2005). For exam-
ple, Barlow et al. (2003) used image segmentation and clas-
sification to identify landslide scars in the Cascade
Mountains in British Columbia using panchromatic SPOT
imagery. Zhang et al. (2005) developed a segmentation
method for classifying burn scars using NDVI differenced
SPOT imagery. Others have reported using object-based
classification to map vegetation species or structure in high
spatial-resolution imagery with more detail than conven-
tional pixel-based methods (Chubey, et al., 2006; Laliberte
et al., 2004; Yu et al., 2006).

These methods have been particularly successful in
urban environments. Herold, Liu, et al. (2003) used
object-based methods to map urban land use in California
using Ikonos imagery; they argue that spatial resolutions
better than 5 m are required for such mapping. Thomas
et al. (2003) compared traditional pixel-based classification
methods in an urban environment with two methods that
incorporated shape, texture, and context in the process;
the first was a time-consuming manual raster modeling
approach, the second was an object-based classification.
The raster model outperformed the other methods, but
the near automated object-based classification method
was a close second.

Here we evaluate both an object-based classification
approach and a conventional pixel-based classification
approach for their value in creating an accurate and near
automated classification of, and differentiation between,
four urban land-use/land-cover categories that are particu-
larly important for wildfire mitigation and modeling pur-
poses – built areas (structures and transportation),
surface vegetation (grassland, irrigated lawns, urban land-
scaping, and agriculture), trees/shrubs, and shadows. The
surface vegetation category is a composite class, because
both urban landscaping and agriculture contain a combi-
nation of bare area and surface vegetation. The shadow
class alone is not particularly valuable; however, it can be
used to assist with further class discrimination, such as sep-
arating trees from shrubs. The three primary categories
(built areas, surface vegetation, and trees/shrubs) are the
building blocks of a basic WUI LULC map designed to
assist fire management, and rapid, accurate and inexpen-
sive map production is often a basic goal for WUI areas.
We mapped all four categories using a freely available
15 cm spatial resolution digital aerial photograph (RGB)
for a WUI area in northern California and both pixel-
based and object-based mapping approaches. An accuracy
assessment was conducted on both maps and these results
are compared.

2. Methods

2.1. Study area

This study was conducted in a small community (Deer-
park – approximately 1 square mile) in Napa County, Cal-
ifornia (USA) (Fig. 1). This community was chosen
because it is located in the wildland–urban interface area,



Fig. 1. Deerpark community in Napa County (northern California, USA).
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and is consequently at risk from wildfire. In addition, it was
of interest to the county fire department to map this partic-
ular community; local fire departments often have a good
idea of areas that might be at risk in a wildland fire situa-
tion and are searching for better maps and other informa-
tion on those locations. Additionally, this area exhibits a
variety of land-use and land-cover types characteristic of
the region, providing an ideal location to test methods that
could be more broadly applied. No urban LULC map
exists for this area at this level of detail; however, free high
spatial resolution imagery was available.

2.2. Image pre-processing

The imagery analyzed was provided by Napa County
and consists of 15cm spatial resolution color aerial photo-
graphs acquired on February 23, 2005. The image size was
12000 columns and 8000 rows, covering an area of 1.10
miles by 0.75 miles. Using a relatively small image size such
as this is essential when determining the best classification
methodology because of the increase in processing speed.
Although this area does not cover the entire WUI in Napa
County, once appropriate the methodology was deter-
mined it could be applied to the entire wildland–urban
interface in Napa County. The photographs were georefer-
enced and orthorectified by Tucker & Associates. Ortho-
rectification was preformed using a Digital Terrain
Model provided by Napa County.

Due to the low spectral resolution and high spatial res-
olution of the image, classifying the 3-band image alone
resulted in high confusion between classes. Therefore, spec-
tral and spatial enhancements were explored to increase
map accuracy. Mean focal analysis was used to decrease
contrasts and emphasize homogeneous information within
each class. Two iterations of a (7 � 7) focal filter were per-
formed on the first principal component containing 95% of
the total variance. The first principal component com-
presses the main information that exists within all three
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bands (Jensen & Cowen, 1999). This enhancement combi-
nation was chosen because it improved the visual separa-
tion of our four target classes (built areas such as
structures and transportation, surface vegetation, trees/
shrubs, and shadows). This layer was then stacked with
the 3-band aerial photograph and used in both the pixel-
based and object-based classification approaches (Fig. 2).

2.3. Iterative self-organizing data analysis technique

(ISODATA) clustering at the pixel level

The unsupervised classification process ISODATA was
run on the combined, spatially-enhanced first principal
component and 3-band aerial imagery using Leica Erdas
Imagine 8.7. ISODATA is a standard unsupervised classi-
fier (Jensen, 1996; Liu et al., 2006) that uses minimum spec-
tral distance to assign a cluster for each candidate pixel
through a number of iterations (Kettig & Landgrebe,
1976). The user specifies a convergence threshold, number
of desired classes, and number of iterations. Iterations
cease when either the convergence threshold or the maxi-
mum number of iterations is reached. The method is not
completely automated, as it requires that the analyst man-
ually label the resultant spectral classes to information clas-
ses. In our case, 100 clusters were specified, with 20
iterations and a convergence threshold of 0.95. After clus-
tering, the classes were combined into the four target clas-
ses. The final classified map was filtered using a 3 � 3
majority filter in ESRI ArcGIS 9 (ESRI, 2004) to remove
spurious pixels common in pixel-based classification
approaches (Fig. 3).

2.4. Object-based classification

The first step in an object-based classification approach
is image segmentation, which creates image-objects that
represent meaningful entities (e.g., roofs or vegetation
patches) by grouping adjacent pixels with similar charac-
teristics. Humans can visually group similar pixels into
Fig. 2. Flowchart displaying the image pre-processing
meaningful objects based on the spatial arrangement and
pixel color (Hay et al., 2003). Segmentation acts to mimic
this behavior by both creating meaningful image-objects
and providing object topology (Hay et al., 2003).

All object-based analysis was conducted using Definiens
eCognition software (Definiens, 2005). Definiens eCogni-
tion software uses a bottom-up segmentation approach,
starting with single pixels as separate objects and merging
them into larger segments with each iterative step (Baatz
et al., 2000). This process is based on image spectral and
textural characteristics and user-defined parameters that
influence the image-object shape and size. A scale parame-
ter is used to control the size of the image-object – the lar-
ger the scale parameter value, the larger the image-object –
and a shape criterion is used to influence the smoothness
and compactness of the image-object (Baatz et al., 2000).
Once segmented, image-objects are populated with spectral
and shape statistics, texture parameters, and topological
information (Baatz et al., 2000). Here, we segmented the
combined, spatially-enhanced first principal component
and 3-band aerial image into two different scales of image
objects: one that targeted large vegetation patches (large
image-objects), and another optimized for small features
such as structures (small image-objects) (Fig. 4). After
exploring numerous scale and shape parameters, the fol-
lowing were chosen based on how clearly they defined
small and large object boundaries: (1) large image-objects
were created with a scale parameter of 250 and a shape cri-
terion of 0.239, and (2) small image-objects were created
with a smaller scale parameter of 100 and a shape criterion
of 0.239.

The segmented image was classified using a combination
of fuzzy and nearest neighbor supervised classification
techniques. The Definiens eCognition program contains
two image classification methods – nearest neighbor
(NN) supervised classification and user-defined fuzzy clas-
sification (Baatz et al., 2000). Nearest neighbor classifica-
tion is based on minimum distance and relies on training
data to classify the image based on spectral, shape, and/
steps and inputs to the two classification methods.



Fig. 3. Final pixel-based classified map.

Fig. 4. The left panel displays the small image-objects, while the right panel displays the large image-objects. The small image-object delineate target
features such as structures, whereas the large image-objects outline features such as vegetation patches.
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or texture feature values. The fuzzy classification method
allows the user to convert the range of feature values into
fuzzy membership values between 0 and 1, where 1 indi-
cates complete membership in a particular class (Definiens,
2005). To be classed correctly, categories frequently need
more than one membership expression, which can be com-
bined using operators such as ‘‘and”, ‘‘or”, and ‘‘not”. The
fuzzy classification in Definiens eCognition is not a wall-to-
wall classifier; it does not classify every pixel of the image.
Each class is extracted individually until the entire image is
classified (Baatz et al., 2000).
Multi-scale classification was used to classify the seg-
mented image. First, 90% percent of the image was classi-
fied on the large image-object scale using fuzzy class
descriptions, which included texture, brightness, and
image-object shape and size characteristics. The Feature
View tool in Definiens eCognition was used to identify
which features and feature value ranges were suitable to
map each LULC category (Definiens, 2005). A total of
six features were selected for classification (Table 1).

The sole feature chosen for built area extraction was the
gray level co-occurrence matrix (GLCM) ‘dissimilarity in



Table 1
Per class fuzzy membership feature selection

Built area Surface vegetation Tree/shrub Shadow

Texture: GLCM dissimilarity (all directions), on spatially
enhanced first PC

Area of sub-object (small object):
Mean

Brightness Brightness

Area Ratio to scene: spatially enhanced
first PC

Length/width
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all directions’ on the spatially-enhanced first principal com-
ponent. GLCM is a calculation of the frequency of differ-
ent gray level pixel combinations that occur in the image
layer, and GLCM dissimilarity is a measure of the total
variation present in each image object (Baatz et al.,
2000). Higher values exist if the image object contains a
large amount of variation (Baatz et al., 2000). With the
spatially-enhanced first principal component, the built
areas contained the least amount of variation, making it
possible to extract this class by using a fuzzy membership
that captured the lowest 20% of the total GLCM value
range.

The surface vegetation category was extracted using the
relationship between large and small image-objects, specif-
ically the mean area of small image-objects to each large
image-object. Using this relationship between large and
small image-objects for the surface vegetation class was
optimal because, compared to the three other classes, there
was a unique relationship between small and large image-
objects. At the large image-object scale, the surface vegeta-
tion polygon size was similar to that of the other LULC
categories. However, at the small image-object scale, sur-
face vegetation polygon size was generally larger than the
other classes. Although it wasn’t consistently larger, the
mean area of small image-objects per large image-object
was consistently larger with surface vegetation, making it
an ideal membership to use to extract surface vegetation
(Fig. 5). This membership was combined with two shape
features, which included area and length/width.

Brightness was used to extract both the tree/shrub class
and the shadow class. Brightness is the sum of each image-
object’s spectral mean divided by the number of spectral
bands (Baatz et al., 2000). The shadow class, containing
Fig. 5. There is a unique size relationship between small and large image-objec
the small image-object scale compared to the other categories, but at the large
the darkest objects, was extracted using the lowest 35%
(values 0–95) of the entire brightness range (0–255). The
tree/shrub category, the second darkest class, was extracted
using the next 35% (values 95–130) of the entire brightness
range. Due to spectral variability present in the shrub/
tree class, one additional feature membership was needed
to classify it – the spatially enhanced first principal compo-
nent ratio to scene per image object. This feature is the
image object’s mean value of the spatially enhanced
first principal component layer divided by this layer’s
scene mean value. This feature captured light green trees
and shrubs that the brightness feature was unable to
extract.

The large image-object scale could only be used to clas-
sify 90% of the image because this segmentation scale was
too large to classify all small features accurately. Therefore,
the small image-object scale was used to separate these fea-
tures and to classify the remaining 10% of the image. The
classified large image-objects were applied to small
image-objects using the ‘existence of’ fuzzy membership
function. Then the remaining 10% of the image was classi-
fied using nearest neighbor supervised classification with 20
photointerpreted samples for training data (Fig. 6).

2.5. Accuracy assessment

Classification accuracy was measured for both classifica-
tion methods using a standard error matrix, and matrices
were compared using a pairwise z-score significance test
(Congalton & Green, 1999) (Table 2). We purposefully
used identical error assessment techniques to evaluate the
pixel- and object-based classifications. The same reference
points visually interpreted from the original imagery, con-
ts for surface vegetation. Surface vegetation image-object size was larger in
image-object scale it was generally the same size as the other categories.



Fig. 6. Final object-based classified map.

Table 2
Accuracy matrices for pixel-based and object-based classification methods

Classified Reference

Built area Surface vegetation Tree/shrub Shadow Producer’s User’s

Pixel-based

Built area 12 26 16 2 0.8571 0.2143
Surface vegetation 0 23 7 1 0.3382 0.7419
Tree/shrub 2 16 69 5 0.6216 0.7500
Shadow 0 3 19 55 0.8730 0.7143

Overall 0.6217
Kappa 0.4781

Object-based

Built area 12 5 2 0 0.8571 0.6316
Surface vegetation 1 51 4 2 0.7500 0.8793
Tree/shrub 1 11 88 7 0.7928 0.8224
Shadow 0 1 17 54 0.8571 0.7500

Overall 0.8008
Kappa 0.7093
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sisting of a 256 random stratified per class sample, were
used for both assessments.

3. Results

Final results for pixel-based and object-based classifica-
tions are found in Figs. 3 and 6, respectively, and a com-
parison between the two methods is found in Fig. 7.
Differences are obvious between the two products: the
object-based method is a more spatially cohesive map, with
none of the spurious pixel effect found with the pixel-based
product. Built areas are also more defined with the object-
based method, and accuracy values reflect these differences.
The pixel-based classification produced the lowest overall
accuracy of 62.11%. Of this overall accuracy, the built area
class yielded the lowest accuracy with a user’s accuracy of
only 21.43%. The other three classes were fair, with user
accuracies of 74.19% for the surface vegetation class,
75.00% for the tree/shrub class, and 71.43% for the shadow
class.

The object-based classification approach yielded a
higher accuracy, with an overall accuracy of 80.08%. This
approach also provided higher user accuracy for each
LULC class. The built area class had the greatest increase
from 21.43% using the pixel-based approach to 63.16%
with the object-based approach. The surface vegetation
class had the second greatest increase (13.74%) in accu-
racy using an object-based approach. The tree/shrub and
shadow classes increased only moderately with a 7.24%
and 3.57% increase, respectively. A pairwise Z-score was



Fig. 7. Comparison of object-based classified map (left) and pixel-based classified map (right). The object-based map delineates features such as structures
and yards far better than the pixel-based map.
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calculated to compare error matrices, which confirmed that
the pixel and object-based error matrices were significantly
different (z: 4.2485).

4. Discussion

High-resolution aerial imagery is abundant and freely
available for many locations in the US, making it an
important resource for scientists, managers, and planners
alike. In addition, because recent multi-agency efforts to
repeatedly map urban areas in the US with high-resolution
imagery fortuitously include the WUI, we can expect more
of the same kinds of data to be available. Traditional pho-
tointerpretation methods are time- and labor- intensive,
expensive, and subjective, making it difficult to fully utilize
this valuable data, particularly over large geographic areas.
While pixel-based classification methods may be adequate
for mapping LULC over large spatial scales, when it comes
to classifying detailed land-use types with high-resolution
imagery, object-based classification methods may yield bet-
ter results.

Here, the object-based classification approach provided
a 17.97% higher overall accuracy than the pixel-based
approach (Fig. 7). This is consistent with other studies that
have shown object-based methods out perform pixel-based
methods when applied to aerial photographs (Laliberte
et al., 2004; Yuan & Bauer, 2006). Here, the object-based
approach provided a significantly higher user’s accuracy
in the built area category with an increase of 41.73%. This
was largely due to the better differentiation between the
built area class and surface vegetation class using the
object-based approach. Using the pixel-based approach,
the bulk of the mis-classified surface vegetation is in the
fields. Pixels with low texture, and high reflectance, in the
absence of spatial context, are classified as urban. The
object-based approach recognized contextual values that
help differentiate these pixels from urban. In this case,
the development of image objects first, rather than pixel
by pixel classification, followed by the ability to analyze
the relationship between small and large image objects
(demonstrated in Fig. 5), resulted in a huge reduction in
mis-classification of surface vegetation. The differentiation
between built area and surface vegetation is particularly
important for wildfire management purposes because map-
ping structure locations and adjacent fuels is crucial for
preventing wildfire-related losses in the WUI. For the pur-
pose of comparing pixel- and object-based approaches,
structures were not differentiated from roads here. How-
ever, a differentiation could be achieved using topology
and shape statistics available with an object-based
approach, or by conducting GIS analysis using a roads
or parcel layer.

Our results indicate that an object-based classification
approach is a more appropriate mapping technique for
WUI applications, because it can be used to more accu-
rately distinguish LULC types. In addition, the increase
in accuracy that the object-based approach yields for the
surface vegetation class is useful for analyzing wildfire
threat in WUI areas, because fire movement through sur-
face vegetation can have a different rate of spread and
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intensity than fire moving through shrubs and trees (Pyne
et al., 1996).

The tree/shrub class yielded similar accuracies using
both the pixel-based and object-based approaches, demon-
strating that both types of classification methods may be
beneficial to land managers and researchers interested in
studying urban forests or wildlife species associated with
tree and shrub communities. The shadow class also yielded
similar accuracies with both methods. Although this class is
not particularly useful to land managers, using an object-
based approach along with the topological relationships
that are built into eCognition, it may be possible to use this
class to further differentiate LULC classes. For example,
trees are associated with shadow because of their height,
and this knowledge may be used to differentiate trees from
shrubs.

In addition to the LULC classification results, an addi-
tional finding from this study is the importance of spatial
enhancements in fuzzy classification methods. Indeed, the
spatial enhancement layer was the sole input used to
classify the built area class for the large image-object scale –
this is the scale at which the majority of the image was clas-
sified. The importance of this spatial enhancement is
particularly significant because the built area class yielded
the greatest accuracy improvement from pixel- to object-
based methods. Our results indicate that the use of spatial
and spectral enhancements is important to class
differentiation.

As we did here, most researchers use standard error
matrices (Congalton & Green, 1999; Foody, 2002) to eval-
uate the accuracy of object-based remotely sensed map
products (e.g., Bauer & Steinnocher, 2001; Herold et al.,
2003; Kettig & Landgrebe, 1976). However, because
object-based classifications generate features with inherent
topology in addition to a planimetric map product, assess-
ment of those feature properties can also be envisioned
(Hay & Castilla, 2006). For example, the accuracy of the
shape and arrangement of features (e.g., homes vis-à-vis
surrounding vegetation) might also be assessed. This has
not been attempted here, but will be in the future.

The object-based methods presented here could be
applied to much larger WUI regions using high resolution
satellite or aerial imagery that provides state or national
coverage (e.g., National Agriculture Imagery Program
(NAIP) aerial imagery for the US and IKONOS Satellite
Imagery). These methods are appropriate for any WUI
region with moderate tree canopy cover or lower, where
structures are visible from above. Field-based mapping
methods, while generally more labor intensive and not fea-
sible over large regions, may be more appropriate for WUI
regions where structures are frequently obscured by tree
canopy.

Across the world, urban areas continue to expand into
fire-prone wildland areas. Understanding where the built
environment meets wildland areas is important for commu-
nities, firefighting personnel, and decision-makers, all of
whom can use the maps created with this approach to tar-
get areas for wildfire hazard reduction – e.g., vegetation
clearing and creating defensible space. In addition, fire-
fighters could use the information to delineate areas that
may require special attention (e.g., specific gear or vehicles)
during fires.
5. Conclusions

Accurate and timely LULC maps are needed for wildfire
management, especially in wildland–urban interface areas
where an increasing numbers of homes are being built into
wildfire-prone areas. This type of mapped data has useful
applications before, during, and after fires happen. Digital
image processing is a viable method for producing LULC
maps from freely available high-spatial resolution aerial
imagery, making it a relatively cost-efficient option. How-
ever, it is important to select appropriate image processing
techniques to obtain the highest map accuracy possible.
Here we have demonstrated that an object-based classifica-
tion approach yields higher accuracy than a pixel-based
classification approach when differentiating between
LULC categories in wildland–urban interface areas. An
object-based approach more accurately delimited and dis-
tinguished between four land-use classes that are necessary
building blocks of a fire map product.
References

Alberti, M., Weeks, R., et al. (2004). Urban land cover change analysis in
Central Puget Sound. Photogrammetric Engineering and Remote

Sensing, 70(9), 1043–1052.
Baatz, M., Heynen, M., et al. (2000). eCognition User Guide. Munich,

Definiens.
Barlow, J., Franklin, S., et al. (2006). High spatial resolution satellite

imagery, DEM derivatives, and image segmentation for the detection
of mass wasting processes. Photogrammetric Engineering and Remote

Sensing, 72(6), 687–692.
Barlow, J., Martin, Y., et al. (2003). Detecting translational landslide scars

using segmentation of Landsat ETM+ and DEM data in the northern
Cascade Mountains, British Columbia. Canadian Journal of Remote

Sensing, 29(4), 510–517.
Bauer, T., & Steinnocher, K. (2001). Per-parcel land use classification in

urban areas using a rule-based technique. GeoBIT(6), 12–17.
Benediktsson, J. A., Pesaresi, M., et al. (2003). Classification and feature

extraction for remote sensing images from urban areas based on
morphological transformations. IEEE Transactions on Geoscience and

Remote Sensing, 41(9), 1940–1949.
Chubey, M. S., Franklin, S. E., et al. (2006). Object-based analysis of

Ikonos-2 imagery for extraction of forest inventory parameters.
Photogrammetric Engineering and Remote Sensing, 72(4), 383–394.

Cihlar, J. (2000). Land cover mapping of large areas from satellites:
status and research priorities. International Journal of Remote Sensing,

21(6–7), 1093–1114.
Cohen, J. D. (2000). Preventing disaster: home ignitability in the wildland–

urban interface. Journal of Forestry, 98(3), 15–21.
Congalton, R. G., & Green, K. (1999). Assessing the accuracy of remotely

sensed data: principles and practices. Lewis Publishers.
Definiens (2005). eCognition Professional, Munich.
ESRI (2004). ArcGIS software. Environmental Systems Research Insti-

tute. Redlands, CA.
Ehlers, M., Gähler, M., et al. (2003). Automated analysis of ultra high

resolution remote sensing data for biotope type mapping: new



326 C. Cleve et al. / Computers, Environment and Urban Systems 32 (2008) 317–326
possibilities and challenges. ISPRS Journal of Photogrammetry and

Remote Sensing, 57, 315–326.
Foody, G. M. (2002). Status of land cover classification accuracy

assessment. Remote Sensing of Environment, 80(1), 185–201.
Frontiera, P. L., Kearns, F. R. et al. (submitted for publication). A new

approach to assessing parcel-level vulnerability to wildfire in the
wildland–urban interface. Landscape and Urban Planning.

Harvey, K. R., & Hill, G. J. E. (2001). Vegetation mapping of a tropical
freshwater swamp in the Northern Territory, Australia: A comparison
of aerial photography, Landsat TM and SPOT satellite imagery.
International Journal of Remote Sensing, 22(15), 2911–2925.

Hay, G. J., Blaschke, T., et al. (2003). A comparison of three image-object
methods for the multiscale analysis of landscape structure. Journal of

Photogrammetry and Remote Sensing, 57, 327–345.
Hay, G. J., Castilla, G. (2006). Object-based image analysis: Strengths,

weaknesses, opportunities and threats (SWOT). OBIA, 2006: The
international archives of the photogrammetry, remote sensing and
spatial information sciences, Salzburg, Austria.

Hay, G. J., Marceau, D. J., et al. (2001). A multiscale framework for
landscape analysis: object-specific analysis and upscaling. Landscape

Ecology, 16, 471–490.
Herold, M., Gardner, M. E., et al. (2003). Spectral resolution require-

ments for mapping urban areas. IEEE Transactions on Geoscience and

Remote Sensing, 41(9), 1907–1919.
Herold, M., Liu, X. H., et al. (2003). Spatial metrics and image texture for

mapping urban land-use. Photogrammetric Engineering and Remote

Sensing, 69(9), 991–1001.
Hollister, J. W., Gonzalez, M. L., et al. (2004). Assessing the accuracy of

national land cover dataset area estimates at multiple spatial extents.
Photogrammetric Engineering and Remote Sensing, 70(4), 405–414.

Jensen, J. R. (1996). Introductory digital image processing: a remote sensing

perspective. Upper Saddle River, NJ: Prentice Hall.
Jensen, J. R., & Cowen, D. C. (1999). Remote sensing of urban suburban

infrastructure and socio-economic attributes. Photogrammetric Engi-

neering and Remote Sensing, 65(5), 611–622.
Kalliola, R., & Syrjänen, K. (1991). To what extent are vegetation types

visible in satellite imagery? Annales Botanici Fennici, 28, 45–57.
Kelly, M., Shaari, D., et al. (2004). A comparison of standard and hybrid

classifier methods for mapping hardwood mortality in areas affected by
‘‘sudden oak death”. Photogrammetric Engineering and Remote Sens-

ing, 70(11), 1229–1239.
Kettig, R. L., & Landgrebe, D. A. (1976). Classification of multispectral
image data by extraction and classification of homogeneous objects.
IEEE Transactions on Geoscience and Remote Sensing, 14(1), 19–26.

Laliberte, A. S., Rango, A., et al. (2004). Object-oriented image analysis
for mapping shrub encroachment from 1937 to 2003 in southern New
Mexico. Remote Sensing of Environment, 93(1–2), 198–210.

Leica (2004). Erdas Imagine 8.7 software.
Liu, D., Kelly, M., et al. (2006). A spatial–temporal approach to

monitoring forest disease spread using multi-temporal high spatial
resolution imagery. Remote Sensing of Environment, 101(2), 167–180.

Murname, R. J. (2006). Catastrophe risk models for wildfires in the
wildland–urban interface: What insurers need. Natural Hazards

Review, 7(4), 150–156.
Pyne, S., Andrews, P., et al. (1996). Introduction to wildland fire. New

York: John Wiley and Sons.
Radeloff, V. C., Hammer, R. B., et al. (2005). The wildland–urban

interface in the United States. Ecological Applications, 15(3), 799–805.
Thomas, N., Hendrix, C., et al. (2003). A comparison of urban mapping

methods using high-resolution digital imagery. Photogrammetric

Engineering and Remote Sensing, 69(9), 963–972.
Vogelmann, J., Sohl, T., et al. (1998). Regional characterization of land

cover using multiple sources of data. Photogrammetric Engineering and

Remote Sensing, 64(1), 45–57.
Vogelmann, J. E., Howard, S. M., et al. (2001). Completion of the 1990s

National Land Cover Data Set for the conterminous United States
from Landsat Thematic Mapper Data and ancillary datasources.
Photogrammetric Engineering and Remote Sensing, 67, 650–652.

Walsh, S. J., Crawford, T. W., et al. (2001). A multiscale analysis of
LULC and NDVI variation in Nang Rong district, northeast
Thailand. Agriculture, Ecosystems and Environment, 85, 47–64.

Yuan, F., Bauer, M. E. (2006). Mapping impervious surface area using
high resolution imagery: A comparison of object-based and per pixel
classification. In American society for photogrammetry and remote

sensing annual conference proceedings 2006, Reno, Nevada.
Yu, Q., Gong, P., et al. (2006). Object-based detailed vegetation

classification with airborne high resolution remote sensing imagery.
Photogrammetric Engineering and Remote Sensing, 72(7), 799–811.

Zhang, Q., Pavlic, G., et al. (2005). A semi-automatic segmentation
procedure for feature extraction in remotely sensed imagery. Comput-

ers and Geosciences, 31(3), 289–296.


	Classification of the wildland-urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography
	Introduction
	Methods
	Study area
	Image pre-processing
	Iterative self-organizing data analysis technique (ISODATA) clustering at the pixel level
	Object-based classification
	Accuracy assessment

	Results
	Discussion
	Conclusions
	References


