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Abstract Historical ecological data are valuable

for reconstructing early environmental and vege-

tation community conditions and examining

change to vegetation communities and distur-

bance regimes over decadal and longer temporal

scales, but these data are not free from error. We

examine the spatial uncertainties associated with

18,000 vegetation plots in the decades-old Cali-

fornia Vegetation Type Mapping (VTM) dataset

that has been digitized for use in modern ecolog-

ical analysis. We examine the relationship be-

tween plot location error and basemap year,

basemap scale, plot elevation, plot slope, and

general plot habitat type. Bivariate plots and

classification and regression tree analysis (CART)

confirm that basemap scale and age are the

strongest explanation of total error. Total error

in spatial location for all plots ranged from

126.9 m to 462.3 m; plots drawn on 15-min

(1:62,500-scale) basemaps had total error ranging

from 126 m to 199.7 m, and plots drawn on

coarser-scale basemaps (1:125,000-scale) had total

errors ranging from 241 m to 461.2 m. Relocation

of individual VTM plots is considerably easier for

plots originally marked on 1:62,500-scale maps

produced after 1904, and more difficult for plots

originally marked on 1:125,000-scale maps pro-

duced before 1898. Biogeographical analyses that

rely less on relocating individual plots, such as

environmental niche modeling or multivariate

analyses can alleviate some of these concerns, but

all researchers using these kinds of data need to

consider errors in spatial location of plots. The

paper also discusses ways in which the differing

spatial error might be reported and visualized by

those using the dataset, and how the data might

be used in modern environmental niche models.
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Introduction

Databases of historical ecological data have

proved useful in modern ecological research for

reconstructing early environmental and vegeta-

tion community conditions, studying disturbance

regimes over long temporal scales, and examining

change to vegetation communities over decadal

and longer temporal scales. In many cases, data

originally captured for taxation or land-surveying

purposes often included some information on

vegetation; this information has become useful to

us now for reconstructing historic vegetation. One

of the most often used historical databases is the
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Public Land Survey System (PLS), which was

instituted by the US General Land Office in 1785

and partitioned US land into Townships, Ranges

and Sections. At each section corner a surveyor

blazed two to four trees, known as ‘‘witness

trees’’. The species, diameter, compass bearing,

and distance to the corner of each tree were

recorded, and these data have become one of the

most important sources for reconstructing pre-

European settlement vegetation in parts of the

US (Bourdo 1956; White and Mladenoff 1994;

Manies and Mladenoff 2000; Manies et al. 2001;

Schulte and Mladenoff 2001; Mladenoff et al.

2002; Schulte et al. 2002; Wang 2005). Wang

(2005) and Mladenoff et al. (2002) provide good

reviews of the data. These witness tree point data

have been used in interpolations and statistical

clustering routines to reconstruct pre-European

settlement forest species composition and struc-

ture across the Midwest, the Southeast and

Eastern US, including Wisconsin (He, Mladenoff

et al. 2000; Radeloff et al. 2000; Schulte et al.

2002; Bollinger et al. 2004); in Alabama (Black

et al. 2002; Rathbun and Black 2006); Minnesota

(Friedman and Reich 2005); Michigan (Leahy and

Pregitzer 2003); Pennsylvania (Black and Abrams

2001); West Virginia (Abrams and McCay 1996),

and Southern Illinois (Anderson et al. 2006).

Other researchers have used the PLS data with

archeological sites to examine Native American

influence on pre-European settlement vegetation

patterns (Black et al. 2002; Foster et al. 2004).

Where PLS data is not available, some

researchers have used less systematic historical

records to reconstruct past vegetation conditions,

or land use patterns (Russell 1981; Jackson et al.

2000; Ryavec 2001; Wilson 2005). For example,

Wilson (2005) used 19th century lumber surveys

to estimate potential forest in Maine; and Jackson

et al. (2000) used land survey notes and forest

resource inventories to reconstruct forest abun-

dance in Ontario, Canada.

While valuable, historical ecological data are

not free from error. Numerous researchers have

discussed caveats associated with use of histor-

ical ecological data, and recommended caution

in using older collections. Uncertainties can

exist in both aspatial or attribute, and spatial

content of the data in these collections (Schulte

and Mladenoff 2001; Mladenoff et al. 2002;

Plewe 2002). For example, reports cite surveyor

variability in reporting vegetation characteriza-

tion and species descriptions (i.e. attribute

errors) (Bourdo 1956; Galatowitsch 1990; Man-

ies et al. 2001; Schulte and Mladenoff 2001;

Schulte et al. 2002) and in the reporting of the

locations of both point samples, linear features,

and polygonal features like habitat polygons or

land parcels (i.e. positional errors) (Ryavec

2001; Gregory 2002). These uncertainties need

to be considered and evaluated before the use

of historic ecological data begins, and this paper

deals specifically with the positional error found

in a historic database.

Case study––The Wieslander vegetation type

map dataset

The Wieslander Vegetation Type Map (VTM)

dataset, collected originally in the 1920s and

1930s in California is a geographically broad and

floristically detailed dataset, valuable for biogeo-

graphical reconstruction and vegetation change

analysis. Albert E. Wieslander led the effort,

funded through the Forest Service and other

federal, state, and county agencies to map 16 mil-

lion ha (nearly 41 million acres) of California’s

wildlands (Wieslander 1935; Wieslander 1961;

Colwell 1977). The VTM collection consists of

five components: plot data gathered at nearly

18,000 plots around the state and including

floristic and environmental detail; plot maps

depicting the locations of the plots sampled;

vegetation maps, showing hand drawn polygons

of forest type, and their associated species;

landscape photographs and associated informa-

tion about location and content of the photo-

graphs; and herbarium specimens for every

species recorded on the vegetation maps or in

the sample plots (Ertter 2000). The collection is a

data-rich resource for foresters, ecologists, land

managers, and others interested in the environ-

ment of early 20th century California, and land

use changes since then. The entire VTM collec-

tion (with the exception of the herbarium spec-

imens) has been digitized and made available via

the Internet for use in modern ecological and

geospatial analysis (Kelly et al. 2005).
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The geographic extent (the maps cover nearly

16 million ha (nearly 41 million acres) of the

state) and floristic detail found in the VTM plot

data have been compelling reasons for ecologists

to use the data in numerous applications. For

example, the VTM plot data have been used to

create classification schemes for vegetation com-

munities in the state (Allen 1989; Allen et al.

1991; Allen-Diaz and Holzman 1991; Griffin and

Critchfield 1972; Jensen 1947) and to validate

modern models of vegetation composition

(Franklin 2002; Vayssières et al. 2000). In addi-

tion, researchers have used the data to recon-

struct California vegetation community

conditions in the early part of the 20th century

in order to examine changes as a result of

disturbances such as development, fire, and dis-

ease (Bradbury 1974; Minnich et al. 1995; Walker

2000; Franklin 2002).

Despite the broad geographic coverage, large

sample size and floristic detail found in the VTM

data, there are methodological challenges associ-

ated with the original collection that researchers

should consider, including the lack of permanent

ground marking, the large symbol used to mark

plot location on basemaps, the lack of precise

surveying equipment available to the samplers,

the non-random location of the plots, and the lack

of direct measurement of individual tree diame-

ters or of within-stand variance (Garrison, In

Review). These combine to make absolute relo-

cation of all original VTM plots unlikely, and

approximate relocation challenging.

Experiences vary in published work describing

VTM plot relocation. Allen-Diaz and Holzman

(1991) estimated <50 m relocation accuracy in

blue oak woodlands using VTM map compari-

sons, photographs, and other geographic cues

(Allen-Diaz and Holzman 1991). Minnich et al.

(1995) reported relocation accuracy at under

100 m in conifer forests by reference to fixed

features such as roads, and the location of

prominent trees include in the original dataset,

and described a protocol with many samples in

the area of the plot to compensate for uncer-

tainty. In contrast, Keeley (2004) found that the

spatial variability in coastal sage scrub and

chaparral communities in Southern California

was too great to perform plot-by-plot analysis of

community change. Others have commented on

the relocation issue. Walker (2000) found that

while the overall fidelity of species composition

mapping was good, the spatial accuracy of the

plots and vegetation map polygons varied with

topography, and spatial error increased in areas

of high terrain. Franklin (2002) found discrepan-

cies between the VTM data and the more modern

USDA Forest Service Forest Inventory and

Assessment (FIA) plots over a large area, but

proposes that this might be a result of differing

sampling schemes between the VTM and FIA

plots, not as a result of spatial accuracy.

These inherent errors are to be expected due to

the mapping technologies available to early 20th

century surveyors, and our digitization process

(involving scanning and georeferencing maps and

plot locations), which introduces additional spa-

tial uncertainty to the dataset. We consider these

experiences, and in this paper present a summary

of the error found in the digital plot database that

results from all sources: error inherent in the

database and that error introduced by the digiti-

zation process. We examine error trends by

basemap year, basemap scale, plot elevation,

slope, and general habitat type in order to provide

information for scientists and managers using the

database to make judgments about the likelihood

of finding individual VTM plots for historical

ecological analysis. We also discuss ways in which

the differing spatial error might be reported and

visualized by those using the VTM webGIS

system designed to allow access to the dataset.

And finally, we discuss uses for the VTM data

that rely less on spatial accuracy of individual plot

location.

Methods

Dataset

There are nearly 18,000 VTM sample plots in

California, primarily concentrated along the cen-

tral and southern coastal ranges, and along the

Sierra Nevada Mountains (Fig. 1), covering

nearly two-fifths of the total area of the state,

and much of its wild area exclusive of the deserts.

The sample plots were located by the VTM crews
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across a gradient of vegetation types, and the

historic records contain data regarding tree stand

structure (number of trees per diameter class),

percent cover of dominant overstory and under-

story vegetation by species, soil type, parent

material, leaf litter, elevation, slope, aspect, par-

ent material, and other environmental variables

(Kelly et al. 2005). Each plot was 1/5th acre

(0.08 ha) in size (800 m2) in forests, and 1/10th

acre (0.04 ha) in scrub and chaparral communities

(Wieslander 1935). All the plot data were stored

on paper data sheets, and individual plots were

numbered according to USGS quad name, quad

section number, and plot number. The plot

locations were stamped with hollow circles of

approximately 3.5 mm in diameter (1.75 mm ra-

dius) in red ink on nearly 150 15-min (1:62,500-

scale) and 30-min (1:125,000-scale) United States

Geological Survey (USGS) quadrangles (Fig. 1).

These maps were produced by the USGS from

1890 through 1946 (Varanka 2006). The map

sheets had been previously cut into sections,

mounted on canvas, and folded, to facilitate use in

the field. This allowed for repeated folding along

the seams, without loss of mapped information.

Digitization and georeferencing of plot maps

We digitized (scanned) and georeferenced the

plot data and associated plot maps to protect the

original collection from further field use and to

allow more researchers to utilize the collection.

Georeferencing is the process of registering one

map or image to real-world coordinates using a

series of tie-points common to the image with

known coordinate system (the ‘‘Master’’ image)

and the image that needs registering (the ‘‘Slave’’

image). These tie-points can either be feature-

based (mapped features common to both maps),

or marked map coordinates (map corners or

Fig. 1 (a) VTM
quadrangles in California
with plot data, (b) an
example of a basemap
with plots marked: in this
field the outer, larger
circle is the original plot
marker and the smaller
mid-point is our
digitization of the center
of the plot
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latitude/longitude grid marks), and they are used

to calculate a mathematical transformation that

warps the slave image. Our digital georeferencing

process utilized image-to-image registration using

modern DRGs (Digital Raster Graphics) as

reference maps. Others have tried different

approaches, for example, Walker (2000) used

modern satellite imagery as the reference map in

the georeferencing process. We decided to use

modern DRGs because of their statewide cover-

age and the abundance of feature-based tie

points. We strove to use feature-based tie points

for image-to-image registration, because marked

map coordinate points can be troublesome as

projections and datums are not always reliably

reported on early 20th century maps. In addition,

some features, such as roads and road intersec-

tions represent some of the most consistent

surveyed features on the map that persist from

the date of the original maps to the present. When

feature-based tie-points were not available or

insufficient, we used map coordinate points.

We performed digital image-to-image georefer-

encing using Erdas Imagine 8.7 software (Leica,

2004), and ArcGIS software (ESRI, 2004). We first

scanned each plot map section at 600 dpi. Next,

digital scanned and uncut versions of each USGS

topographic map of the same edition and reprint

were acquired from map libraries in California, and

modern 1:24,000-scale USGS Digital Raster

Graphics (DRG) of quads corresponding to each

VTM quad were also collected. The uncut historic

topographic maps were registered to the modern

USGS DRGs using stable feature-based tie points.

The VTM plot map sections were then registered

to the uncut topographic maps using each map’s

unique Polyconic projection (the projection was

different for each quad, as each USGS map from

the early 20th century was projected with an origin

at the center of the map (USGS 1928)). In this

second step common tie points from both maps

were used. We used first order polynomial trans-

formations for each step.

Total error for each step was calculated for

each quad using a series of independent check-

points that did not form a part of the rectification

model. Each point on the plot map segments was

then hand-digitized with a high zoom factor

(1:10,000 or greater) in ArcMap by creating a

point at the center of the red circle indicating

each plot point. The resulting quad’s plots points

were re-projected to Albers California projection

system and stored as a shapefile.

Plot elevation, slope, and general habitat type

were derived by overlaying the final plot location

shapefile with a California Digital Elevation

Model and derived slope (90 m resolution), and

a previously digitized 1:100,000-scale habitat map

produced by the VTM project in 1945. Habitat

types included barren, forest, chaparral and

sagebrush, cultivated, urban and industrial, des-

ert, and grasslands. Map age was calculated by

subtracting the basemap’s edition date from 2006.

Since the size of the plot stamp varied slightly

across the collection, we averaged the radii from

the center to the northern edge of the plot circle

from 20 randomly selected plots on 15-minute

quads and 20 randomly selected plots on 30-min

quads.

Quantification of total error

Error accumulates through the digitization pro-

cess: total propagated error includes the error

associated with the basemaps used combined with

the error introduced in the process. We account

for six sources of error in this process; the first

three result from the initial maps and collection

process and are constants based on map scale, and

the last three result from the digitization process

and are different for each map quad:

e1 = Error associated with the historic basem-

aps (constant for each map scale, assumed to

adhere to NMAS 1947);

e2 = Error associated with the Surveyor’s plot

marker (the scale-dependent radius (1.75 mm)

of the red marker (for 1:62,500-scale maps, this

is 112.5 m, and 215.7 m for 1:125,000-scale

basemaps);

e3 = Error associated with the modern DRG

(derived from NMAS standards),

e4 = Error associated with the registration of

the basemap (RMSE per quad, reported from

the georeferencing process);
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e5 = Error associated when the section map is

registered (RMSE per section, reported from

the georeferencing process); and

e6 = Error associated with the analyst locating

the plot in the center of the marked circle

(derived from sample tests);

We used the formula for calculating total error

propagation provided by Thapa and Bossler

(1992) and cited elsewhere (Wieczorek et al.

2004). We assume no functional relationship

exists between individual errors, and we assume

that a linear relationship exists between the total

error and the individual errors. By adopting these

assumptions we contend there is no reason to

assume that all the errors necessarily compound

each other, or that they are all necessarily in the

same direction. This seems reasonable because

these errors are independent of each other, and

from numerous sources. We then calculated total

error by using the law of propagation of errors:

Total error = (e2
1 + e2

2 + e2
3 + e2

4 + e2
5 + e2

6)1=2.

The total error associated with the digitization

process was then provided for the user as a fields

labeled ‘‘error’’ in the point shapefile, and

provided as an ‘‘error buffer’’ in our on-line

webGIS application (vtm.berkeley.edu).

We analyzed the total error from 16,686 plot

points, covering about two-fifths of California

(calculated by the amount of quad coverage) on

nearly 150 basemaps. The year of basemap edi-

tion ranged from 1892 to 1936: all were USGS

topographic quadrangles of either 15-min

(1:62,500-scale) or 30-min (1:125,000-scale) quads

(Fig. 1). Data for each plot (total error, basemap

age, basemap scale, plot elevation, plot slope, and

plot habitat type) was compiled in an Excel file

for use in R statistics package. Data summaries by

scale are provided in Table 1.

Analysis of error

In addition to calculating standard descriptive

statistics of total error and creating bivariate

regression plots of total error and all explanatory

factors (e.g. map age, elevation, slope, and habitat

of the plot) we used a non-parametric multivar-

iate technique, Classification and Regression

Trees (CART), to analyze how these factors

influenced total error. CART is increasing in

popularity among researchers analyzing multivar-

iate data, as it requires no advance variable

selection, its results are invariant to transforma-

tions such as log transforms, it can use any

combination of categorical and continuous pre-

dictor variables. It can handle missing data

(Feldesman 2002), and it has the ability to capture

hierarchical and non-linear relationships and

expose interactions among predictor variables

(Clark and Pregibon 1993; Michaelsen et al.

1994; De’ath and Fabricius 2000; Kelly and

Meentemeyer 2002). The tree models are devel-

oped by recursively partitioning the response

variable (here total error) into increasingly

homogeneous binary subsets based on critical

thresholds in predictor variables. The split chosen

is the one that most reduces the average impurity

in the resulting bins (Breiman et al. 1984; De’ath

and Fabricius 2000; Venables and Ripley 2002).

The resulting ‘‘trees’’ are often displayed graph-

ically, and are easy to understand as a series of if/

then conditions, but they can be complex to

render cartographically (Muñoz and Felicı́simo

2004). All statistical analysis was performed using

R stats package (R_Statistics 2006). We created

trees separately for the plot locations found on

1:62,500-scale basemaps (n = 5,577); and using

Table 1 Summary information of plot data by basemap
scale

1:62,500-scale
(15-min)
n = 5,564

1:125,000
(30-min)
n = 11,122

Both scales
combined
n = 16,686

Elevation
range
(m)

2–2,890 7–3,477 2–3,477

Slope
range
(%)

0.1–71 0.1–79.7 0.1–79.7

Basemap
age
(year)

70–109 71–114 70–114

Basemap
edition
date

1897–1936 1892–1935 1892–1936
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data associated with 1:125,000-scale basemaps

(n = 11,134).

Results

Average total error for all maps was 232.4 m, and

ranged from 126.9 to 462.3 m (Table 2). Not

surprisingly, for the 15-min (1:62,500-scale)

basemaps the errors were smaller (ranging from

126 m to 199.7 m) and larger for the coarser-scale

1:125,000-scale basemaps (ranging from 241 m to

461.2 m). There is a clear, although not statisti-

cally significant, trend describing smaller error on

newer finer-scale basemaps and larger on older

course-scale basemaps (Fig. 2) (R-squared values

are 0.3571 for the course-scale maps (n = 11,134)

and 0.1342 for the fine-scale basemaps

(n = 5,577)).

The largest error was found in the Placerville

quad, which is one of the older basemaps in the

collection (1893 edition), covering mountainous

terrain; the smallest error was found in the

Petaluma quad, one of the youngest basemaps

(1914 edition), and covering less rugged terrain.

The relative contributions from each of the six

error sources are listed in Table 3: in the Peta-

luma quad case the largest contribution is the plot

marker size, in the Placerville quad, the largest

contribution comes from the registration of the

old base map.

Since basemap scale had the largest influence

on error, we performed CART analysis on the

data separated into two classes by scale: plot

locations on 1:62,500-scale basemaps (n = 5,577)

and on 1:125,000-scale basemaps (n = 11,134).

The tree produced from data associated with the

finer-scale maps was a weaker predictor, with a

57% classification rate; while the tree produced

from coarser-scale basemaps was a stronger

predictor (78% classification rate). The CART

Table 2 Total error (calculated according to the law of
propagation) statistics for each scale class, and both scales
combined

1:62,500-scale
(15-min)
n = 5,564

1:125,000
(30-min)
n = 11,122

Both scales
combined
n = 16,686

Minimum
error
(m)

126.0 241.2 126.0

Maximum
error
(m)

199.7 461.2 461.2

Average
error
(m)

138.3 279.6 232.4

Fig. 2 Relationship between total error and age of
basemaps; regression lines fitted through 1:62,500-scale
data (lower line) and 1:125,000-scale data (upper line)

Table 3 Example of map error from the quad with the
smallest and largest total error

Error source Error (m)

Petaluma
Quad
1:62,500-
scale
(15-min)
1914 Edition

Placerville Quad
1:125,000 (30-min)
1893 Edition

E1: Historic
basemap errors

52.91 105.83

E2: Plot marker size 112.46 215.73
E3: Modern DRG 20.32 20.32
E4: Registration of

basemap
14.94 393.70

E5: Registration of
map section

4.30 23.42

E6: Location of plot
in center of
marked circle

1.70 3.94

Total 126.90 462.29
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results help to describe possible influences on

total error (Fig. 3). The trees should be read from

top down, each split subdivides the remaining

data into homogeneous groups, and can be

thought of as a series of greater than/less than

splits. The number above each split is the value of

the split, the numbers at the end of the tree

branch (called a ‘‘node’’) are the mean error for

the group (upper value), and the number of

observations in that group (lower value). Plot

habitat and slope had no consistent influence on

error (because these variables either do not

appear on the tree, or in inconsistent ways), but

there are trends with respect to map scale, age,

and elevation revealed by the analysis. The most

important explanatory factor is map scale: the

error on 1:62,500-scale basemaps is always less

than that found on 1:125,000-scale basemaps.

Once scale is removed as a factor, basemap age

has the strongest influence on total error. For all

plots, maps over 100-years-old provide the most

error: the threshold for the finer-scale maps is

1905 (101-years-old), and for the coarser-scale

basemaps is 1898 (108-years-old). Plots drawn on

maps older than these have significant error in

plot location. For plots drawn on 1:62500-scale

basemaps with editions of 1905 and later all have

similar total error (132 m average), and no other

factors (elevation, slope, or habitat) help us

understand variations in error. For the older

(pre-1905) 1:62,500-scale basemaps, plots with the

worst error are on slopes less than 48%, and on

Fig. 3 Classification tree
results: (a) using data
from 1:62,500-scale
basemaps (n = 5,577); and
(b) using data from
1:125,000-scale basemaps
(n = 11,134). The trees
should be read from the
top down, the text above
each split indicates the
value that separates the
data into less than ( < )
and greater than ( > )
homogeneous groups. At
the end of the lines (or
‘‘branches’’) are ‘‘nodes’’:
these are homogeneous
groups of data. These
nodes are numbered with
an integer in a circle;
below the node number is
the mean error of the
group, and the number of
observations in the group.
Variables include:
age = age of basemap;
dem90 = elevation
derived from 90 m DEM;
slope90 = slope derived
from 90 m DEM
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elevation less than 3,503 ft (1067 m), but these

are neither strong nor consistent relationships.

Of the plots located on coarser-scale basemaps,

editions from 1905 and later produced the best

total error numbers (250.5 m average); plots on

basemaps produced between 1898 and 1904 had

slightly more error (269 m). The worst errors on

coarse-scale basemaps were on pre-1898 edition

basemaps, and of this group, errors increased on

elevations between 4,427 and 5,063 ft (1349 and

1543 m), but the relationship between elevation

and total error is again not consistent. Plot slope

and general habitat are not factors in explaining

error (Fig. 3).

Discussion

Plot relocation considerations

The use of the VTM plot data in modern

ecological analysis within a digital framework

has several advantages. First, our webGIS system

(vtm.berkeley.edu) allows researchers to search,

query and, download species and location data

from plots across California knowing a consistent

digitization and georeferencing process has taken

place. Second, we have tools to assist researchers

in plot relocation, including a protocol-describing

plot data download from our database and plot

location upload to a Global Positioning System

(GPS) for field relocation. We also provide the

total error as a field in the point file, so that users

can create their own error for each plot point; the

digitized location of the plot location and the

error buffer are available on our webGIS appli-

cation (vtm.berkeley.edu) for researcher query

and error visualization (Kelly et al. 2005). Finally,

the digital database saves the collection from

repeated field use and damage: the original maps

and plot data cards in the VTM collection are

now stored in the UC Berkeley Koshland Bio-

sciences and Natural Resources Library.

Despite these advantages, the larger spatial

location errors found in the database make it

challenging for researchers to quickly and abso-

lutely relocate individual plot sites given a

latitude/longitude point and a search radius alone.

For example, researchers relocating plots in the

Petaluma quad (which had the smallest overall

error) would have to cover about 5 ha (circle with

radius = 126.9 m), an area which is only slightly

larger than that covered by the marked circle on

the original map (about 4 ha). In contrast,

researchers interested in the plots on the Placer-

ville quad will have a tremendous challenge: the

search area for each plot is 67 ha (ra-

dius = 462 m). These contrasting cases are shown

in Fig. 4; in the Placerville quad, the search area is

considerably greater than original marked circle,

largely due to the problems encountered regis-

tering pre-1900 maps. The graphics in Fig. 4 are

from our webGIS site, demonstrating how

researchers can quickly visualize the error asso-

ciated with their plots while searching the data-

base prior to download.

This work clearly suggests that relocation of

individual plots will be easier for plots marked on

1:62,500-scale basemaps produced later than

1904. In these cases, average error is about

132 m, and can be as low as 127 m. The pre-

1900 maps have less spatial fidelity than later

versions because often the cartographers relied

on planetable surveying, with transportation by

mule pack train. Regardless of basemap age, plots

marked on 1:62,500-scale maps always have less

error than those on their coarser-scale counter-

parts. When plots are marked on 1:125,000-scale

basemaps, researchers will encounter less error

with plots marked on basemaps produced from

1904 onwards. While Walker (2000) suggested a

relationship at the quad scale between plot

location and topography, we found no consistent

relationship between plot elevation, slope, or

general habitat type and location error at the

regional scale.

There are additional methods that can be

employed to assist researchers to focus the search

for plots within the larger search area. Geograph-

ical inferences can be made about plot location

from the original plot maps; patterns of drainages

and slope on the original map can give insight into

where the VTM crews placed the plot marker on

that map. For example, Fig. 5 shows a plot in the

Concord quad (plot number 82 AC26): this plot

has a total error of 145 m. The original placement

of the plot on the 1915-edition map is clearly in

the first drainage southeast of the confluence of
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Redwood creek (the northerly waterway) and the

other waterway (not named). On the digitized

version, the plot is near the ridge between the first

and second drainages southeast of the same

confluence. The actual plot location is likely

located more to the northwest on the modern

map, toward the edge of the error buffer, but

likely within it. With print-outs of the original

map and the modern DRG, with the error buffer

superimposed on both (available from the web-

site), and slope and aspect, a researcher will be

more able to relocate the original plot.

Other uses for VTM data

Alternative uses of the VTM data lessen the

reliance on spatial accuracies of individual sites.

For example, some researchers have conducted

sub-sampling around individual sites to capture

local spatial variability in community structure

(Minnich et al. 1995). Alternatively, the VTM

data have been used in analyses that do not

require the spatial location of individual plots.

For example, Allen-Diaz and Holzman (1991)

used the dataset to examine vegetation commu-

nity structure through multidimensional statistical

analysis (Allen-Diaz and Holzman 1991), and

Keeley (2004) conducted meta-scale analyses to

examine vegetation change at regional scales

(Keeley 2004). Moreover, the data can be used

as samples of presence data in predictive model-

ing of species distributions. While not distributed

randomly, the geographic coverage, and total

number of VTM plots make these data useful in

newer non-parametric predictive habitat distribu-

tion modeling techniques such as Support Vector

Machines (Guo et al. 2005). Predictive habitat

distribution models, sometimes called environ-

mental niche models (ENM), are increasingly

recognized as important tools that can support

our understanding of historical habitats and

climate change impacts (Iverson and Prasad

1998; Clark et al. 2001) and biodiversity patterns

(Rushton et al. 2004; Graham et al. 2004). The

SVM algorithm seeks to find an optimal series of

‘‘hyper-planes’’ around clusters of presence train-

ing points in multidimensional space (Cristianini

and Scholkopf 2002; Huang et al. 2002). The

multidimensional class description can then be

used to map a niche across a landscape. The SVM

algorithm is non-parametric, it is able to handle

non-linear and categorical data, and makes no

assumption about the probability density of the

data, and techniques such as this will be useful for

Fig. 4 Examples of error
buffers from our webGIS
site for researcher search,
query, and download of
VTM data: (a) Petaluma
quad (lowest total
error = 126.0 m); (b)
Placerville quad (highest
total error = 461.2 m)
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predicting species distributions in the 1920s and

1930s in order to examine potential impacts of

climate change on valuable California habitats.

Conclusions

Data from historical collections describing vege-

tation are increasingly used in modern ecological

analyses to examine vegetation community struc-

ture and long-term change. The VTM collection

is one such source of data, which has been used

recently in biogeographic research. The digitiza-

tion makes this geographically broad and floris-

tically rich dataset available to researcher via the

Internet, but there are considerable spatial uncer-

tainties that must be acknowledged and consid-

ered. Relocation of individual VTM plots is

considerably easier for plots originally marked

on 1:62,500-scale maps produced after 1904, and

more difficult for plots originally marked on

1:125,000-scale maps produced before 1898. Plot

slope and general habitat type have no clear

influence on plot location error, and there are no

consistent trends in error across California that

can be accounted for plot elevation. In biogeo-

graphical analyses that rely less on relocating

individual plots, such as environmental niche

modeling or multivariate analyses, these spatial

errors are not as critical, but all researchers using

these kinds of data need to consider error. To

assist this, we have developed a webGIS site for

researchers to search for, download and visualize

the error associated with VTM plots to support

evaluation and use of these data.
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