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Three sets of coast live oak (Quercus agrifolia) leaf samples were collected on
three dates: 20 April 2002, 23 July 2002 and 11 September 2001, respectively,
for Sudden Oak Death (SOD) monitoring. A total of 330 reflectance spectra

(covering 350–2500 nm) were measured in the laboratory with a spectrometer
FieldSpec1Pro FR. In this study, the spectroscopic determination of two health
levels of the coast live oak leaves was conducted with three sets of spectra. We

used two classification algorithms, penalized discriminant analysis (PDA) and
cross correlogram spectral matching (CCSM), to discriminate between healthy
and infected leaves. PDA is a penalized version of Fisher’s linear discriminant
analysis (LDA) and can considerably improve upon LDA when it is used for

the classification of hyperspectral data. CCSM is practised by calculating the
cross correlation at different match positions between a test spectrum and a
reference spectrum and is also suitable for processing hyperspectral data.

Experimental results indicate that the PDA algorithm has produced approxi-
mately 7% higher classification accuracy than that produced by CCSM,
although both are very low. When considering the subtle spectral differentiation

between the two health levels, the PDA method demonstrates its promise as a
classification algorithm. Among the 10 spectral ranges, some higher accuracies
are produced by both PDA and CCSM algorithms from those spectral range
wavelengths shorter than 1400 nm. Based on our experimental results and

previous work, existing remote sensing techniques, including airborne or satellite
remote sensing and multispectral or hyperspectral remote sensing, may be
insufficient for monitoring and mapping disease-induced moisture stress in trees

that have recently been infected. However, this does not preclude the analysis of
trees at very advanced stages of disease, and the practicality of finding trees
within weeks of dying is considerable.
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1. Introduction

A new disease affecting several tree and shrub species in coastal California USA,
commonly called Sudden Oak Death (SOD), is caused by a newly discovered virulent
pathogen called Phytophthora ramorum (Rizzo et al. 2002). The disease has two
forms: a trunk canker form that affects several tree species and in many cases causes
death, and a non-lethal foliar form that affects several other trees as well as shrubs.
Over the past eight years, a large number of coast live oak (Quercus agrifolia),
tanoak (Lithocarpus densiflorus) and black oak (Q. kelloggii) trees have been killed
by this disease (McPherson et al. 2000, Garbelotto et al. 2001). In addition to a suite
of symptoms found on the trunks of those infected trees, once crown dieback begins,
the foliage of infected trees appears to die rapidly, changing colour from dark green
to pale yellow to brown within a few weeks (McPherson et al. 2000, Garbelotto et al.
2001). In order to monitor the occurrence and spread of the SOD disease in
California, high-resolution imagery (Airborne Acquisition and Registration
Imagery, ADAR) has been used to map dead and dying oak trees in a study area
in Marin County, California (Kelly 2002, Kelly and Meentemeyer 2002).
Similarly, Everitt et al. (1999) reported that they could detect oak wilt disease in

south-central Texas, USA, using airborne digital imagery. They found that they could
delineate dead, diseased, and healthy live oak trees on the digital imagery. These efforts
prove that multispectral remotely sensed imagery captured by airborne sensors can
detect oak mortality caused by disease. This is due to the fact that the spectral
characteristics of diseased oak leaves significantly differ from those of healthy trees.
These spectral differences can be caused by changes in major pigment concentrations
and water content contained in oak leaves (Everitt et al. 1999, Pu et al. 2003, 2004).
In addition to mapping mortality, it is a prudent goal to attempt to diagnose SOD

infected oak trees at a much earlier stage, before the leaves have undergone dramatic
shifts in pigmentation. Success in mapping infected or stressed trees would lend
managers significant advantages in dealing with the disease. Treatment might be
utilized, or at least hazard trees could be monitored. In our initial examination of
this problem, we suspected that the foliage of infected trees had a different water
status from healthy leaves even when they appear green. If this is true, the infected
foliage might have different spectral characteristics from healthy leaves although this
difference might possibly be subtle. This led us to examine the spectral difference
using spectral reflectance measured in the laboratory from oak leaves gathered from
healthy and infected coast live oak trees.
We have known that the spectral difference between the two health levels of oak

leaves sampled is very slight (Pu et al. 2003, 2004) (figure 1) due to the similar relative
water contents (RWCs) of green oak leaves between the two health levels. From the
scarce literature on possible spectral differences between the two health levels due to
other biochemical constituent changes in the infected leaves (Rizzo et al. 2002,
Skiecki and Bernhardt 2002), we assumed the slight spectral difference between the
two health levels might be mainly caused by the difference in the RWCs of oak leaves
at the two health levels, even though the RWC difference is very small.
To detect SOD spectrally, especially at the early infected stage, we proposed the

application of some advanced classification algorithms that are suitable for
processing hyperspectral data in studying the potential of the subtle spectral
difference between the two health levels of oak leaves for identifying the SOD-
infected oak trees with the laboratory-measured spectral data. Of the existing

4 R. Pu et al.



D
ow

nl
oa

de
d 

B
y:

 [P
u,

 R
.] 

A
t: 

16
:2

1 
6 

D
ec

em
be

r 2
00

7 

classification algorithms, we selected two newly developed algorithms to test their
discriminant power for spectroscopic determination of the two health levels of coast
live oak leaves with laboratory-measured spectra in this study. The two algorithms
are penalized discriminant analysis (PDA) and cross correlogram spectral matching
(CCSM). PDA is a penalized version of Fisher’s linear discriminant analysis (LDA)
and can considerably improve upon LDA when it is used for the classification of
hyperspectral data (Hastie et al. 1995, Yu et al. 1999). Yu et al. (1999) used the
technique to identify six conifer species with in-situ hyperspectral measurements and
obtained almost double the accuracy of the LDA. CCSM is practised by calculating
the cross correlation at different match positions between a test spectrum and a
reference spectrum. A test spectrum with a higher cross correlation will have a
perfect matching to a reference spectrum, which leads to the test spectrum being
classified to the reference spectrum. Van der Meer and Bakker (1997, 1998) have
employed the algorithm in mapping surface mineralogical materials with Airborne

Figure 1. Mean reflectance spectra of the two health levels from the three spectral datasets
(APR02, JUL02 and SEP01) showing slight differences in average spectra between the two
health levels: healthy and infected. Note that the mean spectra between the three datasets have
been displaced vertically by 0.5 units to avoid overlapping. Spectral region numbers and
spectral ranges are given in tables 2 and 4.

Spectral determination of oak leaf health levels 5
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Visible/Infrared Imaging Spectrometer (AVIRIS) data in Cuprite, Nevada and they
successfully mapped three minerals there—kaolinite, alunite and buddingtonite.
Although the CCSM algorithm was initially tested for differentiating mineralogical
materials (Van der Meer and Bakker 1997, 1998), a task somewhat different from
our identification of the health levels of oak leaves, based on the principle of the
CCSM algorithm, we can apply the algorithm in this analysis. Furthermore, given
hyperspectral measurements of oak leaves, we expect that the CCSM will be able to
efficiently use the similarity of spectral shape among individual spectra at one health
level to separate the two spectral groups, corresponding to the two heath levels.
To spectrally distinguish infected trees from healthy trees using laboratory-measured

hyperspectral data, it is better to explore all spectral ranges. In this study, we focused
on 10 spectral ranges, some of which overlapped, in considering complete spectral
properties in an individual range along the spectral range of 400–2500 nm. We first
performed several preprocessing routines to the three spectral datasets taken at three
different seasons. These included band smoothing, neighbour band merging and
illumination normalization. Subsequently, the two spectrally discriminant algorithms
(PDA and CCSM) were used to test spectral identification of the two health levels. Our
experimental objectives included: (1) to test and compare the discriminant power of the
two algorithms in identifying the two health levels: healthy and infected, and (2) to
discuss the potential for using laboratory spectra or advanced remote sensing data to
diagnose SOD symptoms appearing on oak canopy at early stages.

2. Field sampling and data measurement

2.1 Leaf sampling

A total of 330 coast live oak leaf samples were collected in three seasons—late spring
(rainy season, 20 April 2002), summer (dry season, 23 July 2002) and early fall
(very dry season, 11 September 2001)—at China Camp State Park (12282905000 W,
3880003000 N), Marin County, CA, USA. All leaf samples were divided into three
datasets, called APR02 (spring), JUL02 (summer) SEP01 (early fall) (table 1). In
order to reduce the effects of any high variability of water content in both healthy
and infected leaves on sample spectra, leaf samples were randomly collected from
branches at different canopy surface positions from different trees. For each tree
canopy three samples were collected and all leaf samples consisted of fresh green
leaves. Green leaf samples included the two health levels: healthy (trees with no
apparent SOD symptoms on the trunk) and infected (trees showing the characteristic
‘bleeding’ on the trunk, an indication of SOD (Rizzo et al. 2002)).
The leaf samples were collected in the field and were immediately sealed in plastic

bags, then sent to the laboratory at the University of California at Berkeley for
spectral reflectance measurement with a FieldSpec1ProFR (Analytical Spectral
Devices, Inc., Boulder, CO, USA) within half a day. With this method, we did not

Table 1. A breakdown of the three spectral datasets.

Dataset Healthy Infected Total Measuring date

APR02 46 50 96 20 April 2002
JUL02 60 66 126 23 July 2002
SEP01 54 54 108 11 September 2001

6 R. Pu et al.
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find any significant spectral difference between similar samples collected at both the
beginning and the end and spectrally measured within the half day. After the spectral
measurement of each leaf sample, the leaves were immediately weighed with an
electronic scale. They were then dried for the second weighing.

2.2 Reflectance measurement

Spectral measurements of all oak leaf samples were measured with the same
spectrometer by following the same procedure. The FieldSpec1ProFR covers the
spectral range of 350–2500 nm, consisting of three separate spectrometers. The
first spectrometer has a spectral resolution of 3 nm and the second and third have
the same spectral resolution of approximately 10 nm. All spectra were measured at
the nadir direction of the radiometer with a 258 field of view (FOV). Lighting is
achieved with two 500 W halogen tungsten filament lamps. The distance between the
spectrometer and the leaf samples was about 5 cm to ensure within-leaf area
radiance measurement. White reference was measured every 5–10 minutes. Each leaf
sample consisted of an overlapped piling of 5–10 leaves to eliminate the possible
effect of background (black cloth) on the spectrum (based on our experiment, a
reflectance spectrum of an overlapped piling of five oak leaves becomes stable). Each
sample was repeatedly measured 10 times with the spectrometer, five from the
adaxial surface and five from the abaxial surface, in order to obtain an average
spectral curve for each sample.

2.3 Relative water content (RWC)

Every oak leaf sample was immediately weighed after spectral measurement (Fresh
Weight, FW). Then they were dried in an oven at 658C until constant weight (Dry
Weight, DW) was reached. Finally, the relative water content (RWC, %) was
calculated from RWC¼ 100(FW7DW)/FW.

3. Analysis method

3.1 Data preprocessing

For testing spectroscope determination of the two health levels with all spectral
samples, we performed the following preprocessing on the three spectral datasets.
First, each spectral curve was truncated with a band wavelength shorter than 400 nm
and longer than 2400 nm because these two-end spectral data were too noisy to be
used, leaving 2001 bands for subsequent analysis. Second, we smoothed each spectral
curve using a 5-band smoothing, which is similar to a low pass filtering. We then
merged every five neighbouring bands into one by an arithmetic average calculation,
yielding 401 bands for each spectrum with a bandwidth of 5 nm. Next, the spectral
curve was normalized by band reflectance divided by the mean reflectance of the

spectrum. That is, we replaced a band reflectance ri with ri
.

1
401

P401
i¼1 ri

� �
. The

effectiveness of such normalization is the suppression of illumination changes among
different measurements (Gong et al. 2001). In this spectral preprocessing, the spectral
smoothing and averaging applied to the datasets did not cause a removal of some of
the subtle spectral differences due to different health levels of oak leaves, based on

Spectral determination of oak leaf health levels 7
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the following two points. Firstly, we checked the ratio of signal-to-noise (SNR)
with different smoothing (filter) sizes of 3, 5, 7 and 9 bands. We found that the use
of 5-band smoothing obtained the greatest SNR. It is true that when a smoothing
is executed on a spectrum, some degree of subtle spectral signal may be removed,
but removal of the spectral noise may be a major part. It is important to make a
better trade-off for removing as much noise as possible. Secondly, the spectrometer
we used is the FieldSpec1ProFR, which covers the spectral range of 350 nm to
2500 nm, consisting of three separate spectrometers. The first spectrometer has a
spectral resolution of 3 nm and the second and third have the same spectral
resolution of approximately 10 nm. Although the output spectral bandwidth from
the instrument is 1 nm, they are interpolated from 3 nm and 10 nm original
spectral resolutions. So, averaging to 5 bandwidth data may not compress the
subtle spectral information. Actually, we tested the APR02 dataset in its original
1 nm bandwidth and did not find any improvement in identification accuracy of
the two health levels.

3.2 Algorithms

3.2.1 PDA. Fisher’s linear discriminant analysis (LDA) is a standard tool used
both for classification and dimension reduction. However, according to Hastie et al.
(1995), LDA also has two deficiencies. First, LDA is too flexible in situations with a
large number of highly correlated predictor variables (such as our spectral samples
with 401 bands), and second, it is too rigid in situations where the class boundaries
in predictor space are complex and nonlinear. In the first case, LDA overfits and in
the second case, it underfits the data. To improve the performance of LDA and
overcome both the problems abovementioned, Hastie et al. (1995) added a penalty
term to the within class variance matrix Sw as:

S0w ¼ Sw þ O; ð1Þ

where S0w is a within class covariance matrix after adding a penalty matrix O. The
selection and discussion of O is found in Hastie et al. (1995).
In order to recognize six confer species using in-situ hyperspectral measurements

with the PDA analysis technique, Yu et al. (1999) considered two types of penalty
matrix. One is a second derivative-type penalty matrix OD for penalizing high local
variation. This type of penalty matrix may be defined as:

OD ¼ lDT
KD

T
K�1DK�1DK ð2Þ

where DK denotes K71 by K-dimensional first difference operator matrix; and l is
called the smoothing parameter. The second is a shrinkage-type penalty that takes
the form,

OS ¼ lIK ð3Þ

where IK is the K6K identity matrix. This is analogous to ridge regression
analysis. For the geometric interpretation of OS and the design of OD, refer to Yu
et al. (1999). In this study, we tested the second derivative penalty matrix OD,
because it can penalize high local variation associated with some bands,

8 R. Pu et al.
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particularly those bands located at and around the areas joining the three
spectrometers. Also, its penalty effectiveness had been demonstrated in Yu et al.
(1999). For preventing the penalty OD from creating unstable results, we also
need to ridge the penalty to increase stability. Since similar spectral characteristics
exist between the dataset (describing similar spectral characteristics of six conifer
species) analysed by Yu et al. (1999) and the dataset (spectral characteristics
also being very similar between the two health levels of oak leaves) used in
this analysis, we expected that we could obtain results similar to those produced
by Yu et al. (1999) when using the PDA algorithm with OD in this analysis.
The PDA discriminant analysis was performed in Splus using the MDA()
collection of functions written by Hastie and Tibshirani. These functions are
documented and publicly available from the S archive of StatLib at http://
lib.stat.cmu.edu.

3.2.2 CCSM. The cross correlogram spectral matching (Van der Meer and
Bakker 1997, 1998) is practised by calculating a set of cross correlation coefficients
at different match positions between a test spectrum (an unknown spectrum or a
pixel spectrum) and a reference spectrum (a known or laboratory measurement
spectrum). According to the method provided by Van der Meer and Bakker (1997,
1998), we moved the test spectrum and referred to a negative match position when
shifting towards a shorter wavelength and to a positive match position when
shifting towards a longer wavelength. Thus match position þ1 means that we are
calculating the cross correlation coefficient between the reference spectrum and the
test spectrum in which all bands have been shifted by one band position number
towards the shorter wavelength end of the test spectrum. The cross correlation is
equivalent to a linear correlation coefficient calculated with a set of overlapping
bands after shifting. Therefore, a cross correlation for matching position m can be
calculated as:

rm ¼
nSRrRt � SRrSRtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½nSR2
r � ðSRrÞ2�½nSR2

t � ðSRtÞ2�
q ð4Þ

where Rr, Rt are reference and test spectrum, respectively; n is the number
of overlapping bands. The significance of the rm can be assessed with the following
t-test:

t ¼ rm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1� r2m

s
ð5Þ

If t4 ta (n7 2) then rm is significant at (17a) confidence level.
A test spectrum with a higher cross correlation will be perfectly matched to a

reference spectrum, which leads to the test spectrum classified to the reference
spectrum. Figure 2 illustrates an application example of the CCSM with our spectral
data of coast live oak leaves. The figure demonstrates that the test spectrum should
be classified as the infected level because it has higher cross correlogram value with
infected reference spectrum than that with healthy spectrum. Furthermore, the cross
correlogram is symmetric about the match position zero. Generally, the cross

Spectral determination of oak leaf health levels 9
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correlogram for perfectly matching reference and test spectra is a parabola around
the central matching number (m¼ 0) with a peak correlation of 1 (Van der Meer and
Bakker 1997). The CCSM algorithm was written in Matlab script and run in Matlab
in this test.

Figure 2. Part mean spectra (a) of training spectral sets as references for the two health levels
and corresponding cross correlograms (b) calculated from a test spectrum that is measured
from an infected leaf sample with the reference spectra in (a). The grey line in (b) indicates that
the test spectrum has matched with the infected reference spectrum better than with the
healthy reference spectrum. So the test spectrum should be classified to the infected level.

10 R. Pu et al.
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3.3 Spectral ranges

In this study, in addition to testing the seasonal effect on identification of the two
health levels with laboratory-measured spectra, we also tested the effect of different
spectral ranges on identification accuracy. The spectral ranges were separated based
on plant spectral characteristics, i.e. several major absorption and reflected
characteristics. A total of 10 spectral ranges (see wavelength ranges in table 2 and
figure 1) were tested. They cover approximately three varying spectral ranges with
distinguished spectral features: the visible region with major pigment absorption (e.g.
chlorophyll content), the near infrared (NIR) region with highly reflected features
(caused by cell structure and multi-reflected properties), and the short wave infrared
(SWIR) region with multi-biochemicals (e.g. water content). The SWIR region was
further divided into two ranges with one containing two minor water absorption
features (SWIR1, covering *1000–1300 nm) and the other covering two major
water absorption features (SWIR2, covering*1300–2400 nm). Some spectral ranges
have combined two neighbouring features, such as, visibleþNIR, NIRþ SWIR1,
NIRþ SWIR. Finally, the last one covers the full range (400–2400 nm).

4. Results and analysis

4.1 PDA

Each of the three sets of spectral measurements (table 1) was used to test PDA
performance. We calculated classification accuracies using PDA with the second
derivative penalty matrix OD for each spectral dataset from 10 spectral ranges. For
each dataset, we first tested a range of values for the smoothing parameter l to
determine an optimal l value, then applied the l value to calculate classification
accuracies for all 10 spectral ranges. The optimal l values are 1.0, 0.5 and 0.1,

Table 2. Discriminant accuracies of three datasets at the two health levels using PDA
classifier.

APR02, l¼ 1.0,
N¼ 96

JUL02, l¼ 0.5,
N¼ 126

SEP01, l¼ 0.1,
N¼ 108

No.
Wavelength
range (nm) H-rate I-rate H-I ave H-rate I-rate H-I ave H-rate I-rate H-I ave

1 400–702 0.52 0.75 0.646 0.62 0.68 0.651 0.67 0.54 0.602
2 400–1002 0.67 0.72 0.698 0.73 0.80 0.770 0.59 0.59 0.593
3 707–1002 0.61 0.60 0.604 0.58 0.64 0.611 0.57 0.80 0.602
4 782–1372 0.61 0.68 0.646 0.58 0.67 0.627 0.59 0.67 0.630
5 502–1372 0.67 0.70 0.687 0.67 0.76 0.714 0.60 0.63 0.611
6 1007–2400 0.61 0.68 0.646 0.50 0.64 0.571 0.69 0.63 0.658
7 852–1897 0.65 0.72 0.687 0.63 0.68 0.659 0.63 0.61 0.620
8 1377–2400 0.61 0.70 0.656 0.38 0.65 0.524 0.57 0.54 0.556
9 1377–1897 0.63 0.66 0.646 0.43 0.62 0.532 0.52 0.65 0.583

10 400–2400 0.76 0.74 0.750 0.63 0.71 0.675 0.63 0.67 0.648

Average 0.634 0.695 0.667 0.575 0.685 0.633 0.606 0.633 0.610

Note: H-rate and I-rate denote discriminant accuracies from healthy and infected samples, respectively;

H-I ave is average of H-rate and I-rate. The italic numbers in the table indicate the first and second highest

accuracy in each column.

Spectral determination of oak leaf health levels 11
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respectively for datasets APR02, JUL02 and SEP01. Figure 3 shows the classification
accuracy produced from the APR02 dataset for PDA with the second-derivative OD

penalty for various choices of the smoothing parameters l. For the smallest l
(l¼ 1078), almost no penalty had any effect, and the classification is equivalent to
that of LDA. The overall classification accuracy (number correctly classified divided
by the number of test samples) is about 0.542 for LDA, but for PDA, the highest
overall accuracy equals 0.750, 38.38% higher than that provided by the LDA
method. We concluded that the penalty effectiveness for PDA is significant. As the
level of smoothing increases, the accuracies of PDA improve until peaking and then
decline. The optimal smoothing parameter l value leading to the highest accuracy
for PDA appears after corresponding training accuracy begins decreasing. This
observation is consistent with that in Yu et al. (1999). Although classification
accuracies for testing a range of l values using the other two datasets are not shown
for PDA, as in figure 3 here, we have observed similar behaviour performed by PDA.
Table 2 lists all overall classification accuracies (rates) produced using PDA from

the three datasets, each with 10 spectral ranges. Each rate in the table, either for
healthy, infected levels or for both averaged, is averaged from accuracies of three
non-overlapping test sets. We used the hold-out sampling method to select test
samples. We first randomly divided all samples in a dataset into three parts equally.
We then used the 1st two parts as training samples and the 3rd part as a test sample
(i.e. test set 1), and used the 1st and 3rd parts as training samples and the 2nd as test
samples (i.e. test set 2) and the same rule was applied to test set 3. The average
accuracy calculated from all 10 spectral ranges for each dataset is the highest for

Figure 3. Discriminant accuracy as a function of smoothing parameter l, generated from the
APR02 spectral dataset. The four curves from top to bottom are identification accuracies
calculated from healthy and infected training samples, from healthy test samples alone, from
infected test samples alone and from healthy and infected test samples.

12 R. Pu et al.
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APR02 (0.667), followed by JUL02 (0.633) and the lowest for SEP01 (0.610).
Differences in spectral reflectance of plant material between samples are mainly
caused by changes in biochemicals contained in plant leaves (Curran 1989, Elvidge
1990), especially pigment contents in the visible region and water content in the NIR
and SWIR regions. Classification by PDA here is primarily based on the ratio of
between-class spectral variance to within-class spectral variance. Therefore, by this
point, the accuracy results for the three datasets seems reasonable when considering
the relative water content (RWC) difference between the two health levels (table 3).
The order of RWC difference between the two health levels for the three datasets
parallels their accuracy order, i.e. RWC difference APR024 JUL024 SEP01
corresponding to raining season (late spring), dry season (summer) and very dry
season (early fall). However, since the RWC differences of all three datasets are very
small, the spectral difference of average spectra between the two health levels also is
very slight (see figure 1). This has led to a lower overall average accuracy and a
smaller accuracy difference among the three datasets analysed by PDA. When
focusing on the accuracy differences calculated from the 10 spectral ranges, some
higher accuracies are produced by those spectral range wavelengths shorter
than 1400 nm (see italic numbers in table 2), especially those covering the visible
and NIR regions only (APR02 and JUL02 datasets). We concur with Gong
et al. (1997) and Van Aardt and Wynne (2001), who demonstrated that
spectral information derived from shorter wavelengths favours classification. This
spectral range is useful moreover because it is always available for laboratory spectra
measurements. In addition, the use of all 2001 bands, covering 400–2400 nm, in this
analysis does not guarantee the creation of the highest identification accuracy
between the two health levels. In fact, for the PDA classification results, only the
APR02 dataset produced the highest accuracy (0.750), and the other two datasets did
not. When checking the classification accuracies generated with CCSM (table 4), we
can easily note that the use of all 2001 bands does not produce the highest accuracies
for all three datasets. This may be because some bands in classification have made a
negative contribution to the final identification of the two health levels.

4.2 CCSM

With the same sampling split strategy to partition the three datasets into training sets
and test sets as used for PDA, table 4 lists all classification accuracy results for
CCSM from the three datasets for all 10 spectral ranges. In general, the overall
average accuracies are lower than those produced by PDA (overall average 0.667 for
PDA vs 0.561 for CCSM, 0.633 vs 0.585 and 0.610 vs 0.573). Moreover, the accuracy
order also differs from that by PDA. The CCSM method produced the highest

Table 3. Relative water content (RWC) of three datasets of coast live oak leaves.

Healthy RWC (%) Infected RWC (%) All RWC (%)

Dataset Average SD Average SD Average SD

APR02 65.09 6.88 67.94 6.74 66.58 6.92
JUL02 45.72 2.90 46.06 2.51 45.90 2.70
SEP01 42.20 4.78 42.46 4.60 42.33 4.67

Spectral determination of oak leaf health levels 13
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discriminant accuracy from the JUL02 dataset while the accuracy generated from
APR02 is the lowest. By comparing accuracy variation among all 10 spectral ranges,
it is evident that some shortwave spectral ranges (wavelength shorter than 1400 nm)
have also led to higher classification accuracies for all three datasets except for SEP01
discriminant accuracies for infected level. Again, this demonstrates that shortwave
spectral information favours classification. There are spectral ranges that produced
similar or identical classification accuracies (e.g. most spectral ranges in the SWIR
region). We can explain this phenomenon by showing that similar spectral curve
shapes among spectral samples that belong to one class, either healthy or infected.
Figure 4 illustrates the similarity of the spectral curve shapes (plot data derived from
SEP01 dataset). For the SWIR region in the figure, the shapes of all spectral curves
look very similar, producing similar accuracies across spectral ranges numbers 5–9.

4.3 Comparison of performance between PAD and CCSM

In the spectroscopic determination of the two health levels of coast live oak, healthy
and infected, with laboratory-measured spectra, PDA performs significantly better
than CCSM. However, both classification accuracies are not ideal (an acceptable
classification accuracy generally being around 80%). PDA can highlight spectral
difference information stored in narrow bands, especially for those bands with
wavelengths shorter than 1400 nm; the method effectively uses the subtle spectral
difference information to identify a spectral sample as either at healthy level or
infected level. The orders of the accuracies derived by the PDA method for all
seasons are consistent with the order of the RWC difference between the two health
levels for all three datasets. In other words, the spectral variation caused by different
RWCs can be efficiently discerned by the PDA method. Fundamentally, CCSM
effectively uses the similarity of two curve shapes to classify samples instead of using
spectral differentiation. Therefore its classification accuracy is not related to the
spectral difference caused by RWC variation or other biochemical changes in our
datasets. In this study, laboratory-measured spectra, whose curves all look very

Table 4. Discriminant accuracies of three datasets at the two health levels using CCSM
classifier.

Wavelength
APR02, N¼ 96 JUL02, N¼ 126 SEP01, N¼ 108

No. range(nm) H-rate I-rate H-I ave H-rate I-rate H-I ave H-rate I-rate H-I ave

1 400–702 0.58 0.69 0.633 0.58 0.68 0.633 0.56 0.43 0.491
2 400–1002 0.53 0.58 0.558 0.67 0.58 0.621 0.59 0.54 0.565
3 707–1002 0.53 0.54 0.538 0.70 0.44 0.570 0.54 0.54 0.537
4 782–1372 0.51 0.46 0.485 0.67 0.58 0.621 0.50 0.59 0.546
5 502–1372 0.51 0.67 0.589 0.58 0.52 0.549 0.52 0.54 0.528
6 1007–2400 0.49 0.65 0.567 0.58 0.55 0.564 0.41 0.81 0.611
7 852–1897 0.51 0.58 0.547 0.57 0.55 0.556 0.41 0.81 0.611
8 1377–2400 0.49 0.63 0.557 0.52 0.67 0.592 0.41 0.81 0.611
9 1377–1897 0.49 0.60 0.547 0.55 0.65 0.601 0.41 0.81 0.611

10 400–2400 0.49 0.69 0.588 0.55 0.53 0.540 0.44 0.80 0.620

Average 0.513 0.608 0.561 0.597 0.573 0.585 0.478 0.669 0.573

Note: H-rate and I-rate denote discriminant accuracies from healthy and infected samples, respectively;

H-I ave is average of H-rate and I-rate. The italic numbers in the table indicate the first and second highest

accuracy in each column.
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Figure 4. Mean spectra of the two health levels: healthy (a) and infected (b), calculated from
the SEP01 dataset, in association with individual spectral samples showing the individual
spectral variation around their mean spectra.
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similar, may not be suitable for CCSM to determine a spectral sample labelling (i.e.
either healthy or infected). In comparison with the result by LDA (l� 0 in figure 3),
PDA has proven that it should be a promising discriminant analysis method.

5. Discussion

In general, the reflectance spectra of green and yellow leaves in those absorption
bands centred at 970 nm, 1200 nm, 1450 nm and 1940 nm are quickly saturated and
solely dominated (Elvidge 1990) by changes in leaf water content. However, for the
coast live oak leaves, based on our preliminary analysis (Pu et al. 2003, 2004), the
reflectances at bands 970 nm and 1200 nm are related to leaf RWC and not
saturated even if the leaf RWC is high—up to 60%. In other words, a spectral range
including the two minor water absorption bands (970 nm and 1200 nm) might be
more useful for separating the two health levels spectrally than that including the
two major water absorption bands (1450 nm and 1940 nm). In fact, figure 1 clearly
shows that the spectral range with wavelength shorter than 1400 nm has a greater
spectral difference (note the spectral range from 700 nm to 1300 nm) between the
two health levels than that with wavelength longer than 1400 nm (note the spectral
range from 1400 nm to 2000 nm). Therefore, it should be reasonable (see table 2)
that some shortwave spectral ranges (wavelength shorter than 1400 nm) have led to
higher classification accuracies for all three datasets except for SEP01 discriminant
accuracies at infected level.
It is evident that reflectance spectra of oak leaves are related to leaf RWC

(figure 1), at least in the NIR and middle IR ranges. In the NIR range, the high leaf
RWC can cause higher spectral reflectance. This is because the full cell of oak leaves,
caused by the pulling force of water in the cell, is favourable for increasing the
reflected spectrum in the range. However, in the middle IR (including the two major
water absorption bands), due to the strong water absorption function, the spectral
reflectance decreases when the leaf RWC increases. The APR02 and JUL02 datasets
in figure 1 have clearly proven this point. The spectral reflectance curves of both
datasets have shown that the reflectance of the infected samples due to higher leaf
RWC (table 3) is higher in the NIR range and lower in the middle IR range than
those of health samples due to lower leaf RWC. For the SEP01 dataset, it seems that
the opposite result appears. We do not exactly know why, but it may be related to
almost the same leaf RWC for the two health levels and to spectral measurement
error (e.g. not perfect spectral calibration).
Remote sensing of SOD diseased trees for identifying various health levels is based

on spectral differences between them. It is possible that this difference is caused by
changes in pigment content, water content, other biochemical constituents and cell
structure in the oak leaves. Little is known about the biochemical change occurring
in the oak leaves of infected trees. Most studies examining SOD canker disease
describe symptoms appearing on trunks early, while the canopy change occurs much
later in the disease cycle (McPherson et al. 2000, Rizzo et al. 2002). We compared the
RWC of healthy and infected coast live oak leaves (table 3).
The RWC difference between healthy and infected samples for the three datasets is

not significant when considering corresponding standard deviations to their means.
This means that it will be difficult to rely on spectral changes caused by RWC to
diagnose the health levels in trees (referring to the classification results in tables 2 and
4). SOD infected oak leaves at the late stage of the disease show colour change in the

16 R. Pu et al.
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leaves or a chlorotic appearance that may primarily be attributed to leaf moisture
stress. If this is true, infected leaves gathered from late state infected trees should
have a lower RWC than that of healthy leaves. However, based on our
measurements (table 3), at an early stage of the infection, infected leaves conversely
have a slightly higher RWC than healthy leaves. This phenomenon supports the
work by Skiecki and Bernhardt (2002). They found that trees with early SOD
symptoms tended to have higher stem water potentials (SWPs) (and therefore higher
RWCs in leaves) than trees without SOD symptoms. Furthermore, as long as the
trees remain green, SWP does not seem to decrease gradually over time as symptoms
progress on the stem. While Skiecki and Bernhardt (2002) assume that some time in
the year preceding canopy colour change the moisture content of the leaves declines,
they cannot be sure of the time. It is entirely possible that the RWC of infected leaves
remains unchanged over a relatively long time period, then rapidly changes
immediately prior to and precipitating the dramatic colour change. Therefore, at the
early stages of SOD, the results showing the RWC of infected leaves as higher than
or equivalent to that of healthy leaves seems reasonable.
There have been many studies on forest moisture stress detection and mapping

with multi/hyperspectral remote sensing data, including both airborne and satellite
remote sensing. Water stress may be attributed to drought (either weather or soil) or
diseases or both. A general conclusion drawn from this type of research suggests that
canopy moisture stress would be detectable with remote sensing techniques only
when the moisture stress reaches a relatively high level. For example, Riggs and
Running (1990) used Airborne Imaging Spectrometer (AIS-2) data to detect canopy
water stress in conifers, and they concluded that water stress in conifer canopies may
not be routinely detectable at an operational landscape scale because no significant
differences in reflectance between most coniferous stressed and controlled canopies
were found, probably due to the relatively weak water stress. For mapping mixed
conifer mortality due to continuous drought in the Lake Taheo Basin with multi-
temporal Landsat TM images, Collins and Woodcock (1994, 1996) employed several
change detection techniques to successfully detect mortality trees. These trees died
because of severe drought (high moisture stress), thus they are very detectable. In
monitoring forest health conditions, especially for hardwood oak forest diseases,
airborne digital imageries have been successfully used to delineate or map dead and
dying oak trees (Kelly 2002) in monitoring SOD in California and to detect oak wilt
disease (Everitt et al. 1999) in south-central Texas. In addition, satellite images are
also feasible to detect defoliation in hardwood forests with SPOT imagery (e.g.
Muchoney and Haack 1994) and in conifer forests with Landsat TM data (e.g. Royle
and Lathrop 1997). However, the defoliation has to be 425%. This defoliation can
be caused by canopy water stress, insects and diseases. All previous work has
demonstrated that by using airborne or satellite remote sensing images, canopy
moisture stress may be detected only when the stress is very high, and forest healthy
conditions can be monitored or mapped only for those severely infected (or affected)
trees and dying or dead trees. To detect or monitor slight moisture stress on canopy
or some forest diseases at an early stage when the canopies still look green, existing
remote sensing techniques may not be adequate.
Our experiment results, using laboratory-measured spectra to differentiate the two

health levels of coast live oak leaves, also prove to a certain degree that the RWC of
infected leaves is not very different from that of healthy leaves (i.e. all green leaves),
therefore remote sensing diagnosis of SOD at early stages at individual tree level or

Spectral determination of oak leaf health levels 17
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stand level may not be feasible. However, because the stressed or infected trees can
eventually change the tree leaf colour and canopy structure, expressed as changes in
leaf area index, crown closure and stem density, etc., and because this change should
affect spectral characteristics at canopy and landscape scales (Tucker 1979, Everitt
et al. 1986), it might be expected that remote sensing of plant canopy stress should be
feasible at an advanced stage. Especially as remote sensing technology improves in
spectral, spatial and temporal resolutions and in the ratio of signal to noise of
images, it will become a very promising tool to monitor and map forest moisture
stress and other healthy conditions at various levels.

6. Preliminary conclusions

In this study, we assumed the slight spectral difference between the two health
levels, healthy and infected, might be caused mainly by differences in the relative
water contents (RWCs) of oak leaves at the two health levels, even though the
difference is very small. In the NIR range, the high leaf RWC can cause higher
spectral reflectance due to multi-reflected effectiveness of cell structure. However,
in the middle IR (including the two major water absorption bands), the spectral
reflectance decreases when the leaf RWC increases due to the strong water
absorption function.
In this experiment, penalized discriminant analysis (PDA) has shown its

advantage over cross correlogram spectral matching (CCSM) for discriminating
samples of coast live oak leaves across three seasons. The overall average accuracy
for PDA is approximately 7% higher than that for CCSM. PDA catches spectral
difference information primarily caused by RWC differences in healthy and
infected leaves, while CCSM can effectively use the similarity of spectral curve
shapes between a test spectrum and a reference spectrum. The accuracies produced
by both algorithms are very low, and could even be considered unacceptable from
a routinely operational point of view. However, when we consider the spectral
similarity among spectral samples, we conclude that PDA should be a very
promising classification algorithm compared to traditional linear discriminant
analysis (LDA), which is often problematic for classification with hyperspectral
data. Among the 10 spectral ranges, some higher accuracies are produced by both
PDA and CCSM algorithms from those spectral range wavelengths shorter than
1400 nm, especially from those covering visible and NIR regions only (APR02 and
JUL02 datasets).
Based on our experimental results and previous work, existing remote sensing

techniques, including airborne or satellite remote sensing and multispectral or
hyperspectral remote sensing, may be insufficient for monitoring and mapping
disease-induced moisture stress in trees that have recently been infected. However,
this does not preclude the analysis of trees at very advanced stages of disease, and the
practicality of finding trees within weeks of dying is considerable.
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