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Abstract

Although remote sensing offers the ability to monitor
wetland restoration, few have tested automated methods
for quantifying vegetation change. We implemented
a semiautomated technique using color infrared aerial
photography and a common vegetation index, Normalized
Difference Vegetation Index (NDVI), to document vege-
tation colonization in a restoring salt marsh. Change in
vegetation over a period of 10 years was analyzed using
a postclassification comparison technique where each
image year was classified individually into vegetated and
nonvegetated areas using NDVI thresholds and then dif-
ferenced between years to identify areas of vegetation
change. Vegetated and nonvegetated areas were identified
using this technique, as were areas and time periods of
vegetation change. By comparing classified NDVI imag-
ery, we calculated that 90% of our study site was vege-

tated 10 years after restoration. This study demonstrated
that high-resolution remotely sensed data can be analyzed
with common geospatial software to monitor change in
a rapidly vegetating wetland and that long time frames
with yearly image acquisition are needed to quantify plant
colonization rates. This method was effective at detecting
change in vegetation over time in a variable tidal marsh
environment using imagery that had inconsistent specifica-
tions and quality across years. Inconsistencies included
interannual climate variation, phenology, and presence of
algae, as well as differences in pixel size and image bright-
ness. Our findings indicate that remote sensing is useful
for postrestoration monitoring of tidal marsh ecosystems.

Key words: change detection, NDVI, Petaluma River
Marsh, remote sensing, San Francisco Bay-Delta, tidal
marsh restoration.

Introduction

Wetland habitat is being secured and restored throughout
the world (Zedler & Kercher 2005); however, achieving
conservation goals and objectives requires knowledge of
vegetation composition, structure, and change over time
in attributes such as percent cover, biomass, and plant
diversity (Phinn et al. 1999). Unfortunately, postrestora-
tion monitoring is commonly underfunded, understaffed,
or short term, and the data collected are rarely published
(Zedler 2000). Therefore, there is a need to further
develop, refine, and disseminate site and landscape-level
monitoring methods (Simenstad et al. 2006). We present
a method for monitoring vegetation change over time in
restoring wetlands using simple remote sensing techniques
and common geospatial software.

Remote Sensing for Wetland Monitoring

Remote sensing involves the acquisition of information
about the Earth’s surface at a remote distance, usually by
airplane or satellite (Jensen 2000), offering tools to map,
measure, model, and evaluate wetland restoration efforts
in a non-invasive, cost-effective manner. The use of this
technology is rapidly growing in the ecological sciences
because ecosystems, such as wetlands, can be monitored
at various spatial and temporal scales (Jensen et al. 1995;
Guo & Psuty 1997; Michener & Houhoulis 1997; Apan
et al. 2002; Heinl et al. 2006; Papa et al. 2006).

Despite the growing use of remote sensing for wetland
inventory and monitoring (Phinn et al. 1996; Zhang et al.
1997), there has been limited use of this technology on
restoring wetlands (Phinn et al. 1999; Hinkle & Mitsch
2005). Furthermore, there is growing consensus about the
need to examine restoration projects at the landscape
scale and to develop landscape-based tools for monitoring
restoration progress (Simenstad et al. 2006). Remote sens-
ing is ideal for monitoring restored wetlands because it
allows for a high spatial and temporal intensity of meas-
urements in relatively inaccessible and sensitive sites,
without the potential invasiveness that traditional field
methods present to delicate habitat conditions, bird nest-
ing territories, or endangered species habitat (Shuman &
Ambrose 2003). In addition, many wetlands are physically
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inaccessible due to soft sediment or dense vegetation.
Remote sensing allows for broad-scale estimation of many
parameters valuable to ecologists, including land cover,
vegetation structure, biophysical characteristics, and
habitat areas (Smith et al. 1998; Thomson et al. 2003;
Higinbotham et al. 2004; Wulder et al. 2004), in a non-
invasive manner.

Both aerial photography and satellite imagery have been
used for wetland vegetation classification and monitoring.
High-resolution multispectral satellite imagery offers some
advantages over aerial photography in terms of geometric
control, radiometric precision, spectral range, and image
processing and allows for the same ability as aerial pho-
tography to map vegetation composition and structure.
Past work has shown that both types of imagery offer dif-
ferent, but complementary, information (Ozesmi & Bauer
2002), and many studies have combined the two platforms
in order to benefit from the advantages of both (Jensen
et al. 1984, 1986; Ramsey & Laine 1997; Palandro et al.
2003; Everitt et al. 2004). However, much of the wetland
science still requires the very high resolution and flexible
flight times offered by aerial photography (Harvey & Hill
2001). For these same reasons, some organizations choose
aerial photography over satellite imagery for their wetland
monitoring projects (Jensen et al. 1986). Furthermore, the
use of historical imagery is often required in long-term
studies (Van Dyke & Wasson 2005), and researchers are
therefore restricted in the imagery that is available.

Recent advancements in imaging science have also
provided finer spatial, spectral, and temporal resolutions,
as well as reduced price (Hirano et al. 2003; Schmidt &
Skidmore 2003; Rosso et al. 2005a). In addition, nonopti-
cal data sources, such as radar data (e.g., SAR, RADAR)
and laser altimetry (e.g., LiDAR), have been shown to
add value when combined with optical remote sensing
data (Ramsey et al. 1998; Rosso et al. 2005b). Although
this can be highly useful for studies that use satellite imag-
ery, it does not substitute the frequent need for resolutions
finer than 1 m.

Change Detection

There are many ways of utilizing remotely sensed data,
such as aerial photography, to monitor landscape changes.
Change detection measures differences in a variable, such
as vegetation cover, over time and many methods are
available (Singh 1989; Lu et al. 2004). Change detection is
an important tool for wetland restoration monitoring
because it provides measurements of incremental changes
that can be used for inventory and benchmark purposes,
which then can be integrated with adaptive management
plans and targeted for specific restoration goals. Effective
change detection can help to track changing boundaries
between mudflat and vegetation patches, characterize veg-
etation dynamics and spatial patterning, and gain a better
understanding of biotic and abiotic interactions (Smith
et al. 1998).

Normalized Difference Vegetation Index (NDVI) is the
most commonly used vegetation index for discriminating
between vegetated and nonvegetated areas in environ-
ments with low-to-moderate vegetation cover on light
soils or backgrounds (Eastwood et al. 1997; Jensen 2000)
and has been used in change detection methods (Singh
1989; Apan et al. 2002; Lu et al. 2004). In some cases,
NDVI can be used to differentiate plant species or growth
types, as well as be used as an indicator of plant productiv-
ity that can be correlated with biophysical parameters
such as live plant biomass (Jensen 2000). In past studies,
NDVI was found to most accurately represent vegetation
change when compared to six other vegetation indexes
(Lyon et al. 1998).

Automated and semiautomated change detection meth-
ods ideally should not require a largely technical skill set.
We demonstrate the use of a semiautomated change
detection technique utilizing common Geographic Infor-
mation Systems (GIS) packages on the market. Although
we consider this method semiautomated due to a small
amount of manual work, the amount of manual work is on
par with supervised image classification, which is consid-
ered automated. This study addresses one potential moni-
toring method through the use of remote sensing to map
vegetation cover and measure the amount, location, and
spatial pattern of vegetation change at a recently restored
salt marsh. Although this study does not use new techni-
ques or data types, it effectively illustrates successful
change detection in a highly dynamic restoring ecosystem.

Methods

Study Site

Petaluma River Marsh, which is also known as Carl’s
Marsh, is located near the mouth of the Petaluma River
(lat 38�79170N, long 122�309250W) in San Pablo Bay in
the northern reaches of the San Francisco Bay-Delta,
California, U.S.A. (Fig. 1). The site is surrounded by agri-
culture to the immediate east and north but is in close
proximity to many marshes. Petaluma River Marsh was
restored to tidal action in 1994 following the dredging of
two main channels from the breaches in the north and the
south ends of the outboard levee and the removal of soil
from the site to heighten and strengthen the inboard
levee, which created linear features within the site. No
vegetation was planted (Siegel 2002).

Petaluma River Marsh accumulated sediment rapidly
(Siegel 2002). After only 4 years of tidal flow, plant coloni-
zation by California cordgrass, native (Spartina foliosa)
began to occur and radial, clonal growth continued. Over
the next 2 years, additional species, such as Alkali bul-
rush1 (Bolboschoenus maritimus) and Annual pickleweed
(Salicornia europaea), colonized the site along both levee
and channel edges. Presently, the site is almost entirely
vegetated with the three aforementioned species, as well

1 Bolboschoenus maritimus is formerly known as Scirpus maritimus.
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as Perennial or Common pickleweed2 (Sarcocornia pacif-
ica) and contains eight native plant species. The surround-
ing levee contains multiple invasive species; however,
none have encroached upon the site.

Image Preprocessing

Color infrared (CIR) aerial photography was collected for
this site once a year between 1995 and 2004 (Table 1), with
the exception of 1996 and 1997. CIR photographs are mul-
tispectral and have three bands in the green, red (R), and
near-infrared (NIR) spectral regions. For this project, no
satellite imagery was obtained over this site. No airborne
GPS or inertial measurements were taken during image
acquisition. All photographs were scanned at 1,200 dpi
and were georeferenced to Universal Transverse Mercator
Zone 10 projection and 1983 North American Datum
using 4–10 ground control points (GCPs). GCPs were sur-
veyed with differential correction to submeter accuracy
using survey-grade equipment by a professional licensed
surveyor. All georeferencing work was performed using
the Georeferencing toolbar in ESRI’s ArcGIS 9.0 soft-

ware (Environmental Science Research Institute 1995–
2007). Root mean squared errors (RMSE) are listed in
meters in Table 1. All images prior to 2003 were re-
sampled to a pixel size of 20 cm to match the resolution of
years 2003 and 2004 (Table 1).

Change Detection

The NDVI was calculated for each image using the
formula:

NDVI ¼ NIR � R

NIR1R
:

Because live vegetation reflects highly in the NIR wave-
length region and absorbs in the red region, higher NDVI
values indicate vegetated areas. NDVI values range from
21 to 1. ERDAS Imagine software (Leica Geosystems,
Inc. 2006) was used to perform the NDVI calculation,
which rescaled the 21 to 1 NDVI values to 0–255 in order
to provide numbers that are appropriate to display as gray
scale and standardize the range of pixel values in an eight-
bit image.

For each NDVI eight-bit image, a NDVI threshold was
visually determined between vegetated and nonvegetated
pixels, meaning values equal to and above this threshold
represented vegetation and values below the threshold
were bare or nonvegetated (Fig. 2). This determination
was made through prior knowledge of the site (i.e., photo-
graphs and field visits), as well as visual determination and
agreement by K.T. and L.S. Although the optimum
threshold level can be chosen based on the histogram or
standard deviations from the mean, Singh (1989) proposed
that the best threshold level can be determined by prior
knowledge of the site. We reclassified, or recoded, the
NDVI image into two classes: vegetation and nonvegeta-
tion. We then performed this recoding process on three
NDVI values above and below (±3 NDVI values) the
optimum threshold to account for subjectivity in threshold
determination by human interpreters, as well as radiomet-
ric differences between image years, which would affect
change detection (Lu et al. 2004). Digitization of the aerial
photographs was not considered due to concerns of accu-
racy of the delineation of very fine-scale patches, as well
as subjectivity of the visual interpreter. This process was
applied to all images except for the one flown in 1999.
Image date 1999 was mosaicked from three separate aerial
photograph tiles or image segments that together com-
prised the entire image, and variable camera angle for
each tile caused abrupt changes in pixel values at the
seams of the tiles. This variation prevented us from assign-
ing the same threshold value for the entire image. A
threshold value that differentiated vegetation from bare
areas in the middle tile overestimated vegetation for the
bottom tile and underestimated vegetation for the top tile.
As a result, we analyzed each tile separately, determined

Figure 1. Petaluma River Marsh is located near the mouth of the Pet-

aluma River along the northwestern reaches of the San Francisco

Bay-Delta, California, U.S.A.

2 Sarcocornia pacifica is formerly known as Salicornia virginica.
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the optimum NDVI threshold value ±3 threshold levels,
reclassified each tile, and joined the reclassified tiles
together. The resulting image was used when calculating
vegetation change over time.

Each reclassified image was clipped to include only the
levees and interior of the site. The total area of vegetated
and nonvegetated pixels was calculated for each image
year and plotted as a time series. In addition, each reclas-
sified image was compared to its previous year, and areas
of vegetation gain, loss, and no change were calculated. A
Student’s t test was performed to determine significant dif-
ferences, if any, between yearly changes in area of vegeta-
tion loss and gain across all years.

No ground reference data were available for years prior
to 2003; therefore, no accuracy assessment could be
performed for these image years. However, accuracy
assessments were performed on vegetated/nonvegetated
classifications for 2003 and 2004 with vegetation field sur-
veys that were conducted during those years. The surveys
consisted of visiting point locations each year (194 points
in 2003 and 163 in 2004) using handheld Garmin GPS
units with a horizontal accuracy of 3–6 m (using Wide
Area Augmentation System [WAAS] differential correc-
tion) and recording species presence and bare area in a
3-m radius relevé (circular plot). The points were ran-
domly generated in GIS and were stratified between vege-
tated and nonvegetated areas. Overall accuracy was

calculated by comparing the ground data to the reclassi-
fied maps and dividing the total number of accurate classi-
fications by the total number of ground reference points.
This calculation was performed for the optimum threshold
as well as the ±3 NDVI thresholds. We also computed
errors of omission and commission, two commonly mea-
sured indexes for map accuracy assessment, in addition to
overall accuracy (Congalton 2004). The omission error,
also known as the ‘‘producer’s accuracy,’’ measures the
probability of a ground point being correctly classified.
The commission error indicates the probability of a ground
point on the map representing what is truly on the ground
and is often called the ‘‘user’s accuracy’’ (Congalton
2004).

Results

The RMSE for all sites ranged from 0.04 to 1.10 m
(Table 1). Although some of the historical imagery had
been georectified previously and the RMSE for the past
rectifications were unknown, it is estimated that RMSE for
all image dates are roughly 1 m. Using NDVI threshold
classifications, we differentiated vegetated from nonvege-
tated pixels successfully and calculated total acreage of
each classification for all images, with the exception of the
2001 image (Fig. 3). Pixels that were clearly visible as being
vegetated in the 2001 CIR photograph were not classified

Figure 2. Each CIR image (A) was transformed to NDVI (B), after which pixels were reclassified as vegetated or nonvegetated (C).

Table 1. Summary of image specifications used in change detection analyses.

Image Year Image Date Image Ratio Scale
Original Pixel

Size (cm) RMSE (m)
Pixel Size after

Resampling (cm) Camera Type

1995 29 November 1995 1:7,200 20 0.1326 20 Unknown
1998 9 September 1998 1:2,400 24 0.0475 20 Zeiss RMK Top 15 camera,

with Zeiss pleogon lens
1999 26 August 1999 1:2,400 24 0.0660 20 Zeiss RMK Top 15 camera,

with Zeiss pleogon lens
2000 29 September 2000 1:3,600 7 0.0638 20 Wild RC30 lens
2001 8 August 2001 1:7,200 11 0.4654 20 Unknown
2002 8 August 2002 Not available 22 0.2905 20 Unknown
2003 14 August 2003 1:7,200 20 1.0068 20 Zeiss RMK Top 15 camera,

with Zeiss pleogon lens
2004 19 August 2004 1:9,600 20 1.1012 20 Zeiss RMK Top 15 camera,

with Zeiss pleogon lens
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as vegetation in the NDVI image, despite the fact that
these pixels were categorized as vegetated in 2000 and
2002. We did not use the 2001 data in our subsequent anal-
yses because methods other than those presently men-
tioned were required to classify the land cover types.

The colonization and growth rate of vegetation were
slow during the first 5 years after tidal restoration but
began to increase more rapidly between 1999 and 2000
(Fig. 3). As more colonization occurred, we experienced
more variability in the vegetated/nonvegetated NDVI
classifications for each year; the largest difference in our
NDVI thresholds buffers occurred in 1999 and 2002. By
August 2004, the site was 90% covered in native vegeta-
tion (Fig. 4).

We documented the location of vegetation colonization,
growth, and loss over time (Fig. 5). The initial colonization
occurred along levee edges and in a few scattered patches
in the interior (Fig. 5A). Marked radial clonal growth was
evident between 1998 and 1999 (Fig. 5B), and there was
an increase in vegetation growth along the interior chan-
nel edges between 1999 and 2000, as well as vegetation
loss along the interior levee due to new channel formation
(Fig. 5C). Colonization along channel edges continued
between 2000 and 2002 (Fig. 5D), and the greatest peak in
vegetation growth occurred between 2002 and 2003
(Figs. 5E & 6). At any given period, vegetation gain was
greater than vegetation loss (t5 ¼ 3.53, p ¼ 0.017; Fig. 6).
The accuracy assessments conducted on the optimum
threshold classification for image years 2003 and 2004 ren-
dered overall accuracy rates of 84.1 and 96.3%, respec-
tively (Table 2; Fig. 7).

Discussion

In this study, change in vegetation over time was analyzed
using the postclassification comparison technique, where
each image year was classified individually into vegetated
and nonvegetated areas using NDVI thresholds and then
differenced between years to identify places of vegetation

gain, loss, or no change. This change technique method is
semiautomated, allows for the use of common geospatial
software, and is easy to analyze using the sometimes
inconsistent historical data that may exist for many wet-
land sites. In addition, this method reduces errors caused
by atmospheric, soil moisture, and sensor differences
across images because it can be used to consider each date
individually (Singh 1989). We recommend this technique
for tidal marsh change detection because it reduces effects

Figure 3. Change in cover of vegetated and bare areas at Petaluma

River Marsh following tidal restoration was calculated for each image

date between 1995 and 2004 (error bars ¼ ±3 values from NDVI

threshold).

Figure 4. Spatial representation of total vegetation colonization that

occurred between 1995 and 2004. Ten years after tidal restoration,

Petaluma River Marsh was 90% covered in native vegetation.
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from variability in image acquisition and climate. NDVI
was chosen to differentiate between vegetation and non-
vegetation for each year because it is an effective and
commonly used vegetation index in both remote sensing
and ecology.

This approach is more automated than hand-digitizing
vegetated areas via photointerpretation because each pixel
is automatically assigned as vegetated or nonvegetated
based on the chosen threshold. However, because the
choice of threshold takes human visual interpretation, we

Figure 5. Spatial representation of vegetation change at Petaluma River Marsh between (A) 1995 and 1998, (B) 1998 and 1999, (C) 1999 and

2000, (D) 2000 and 2002, (E) 2002 and 2003, and (F) 2003 and 2004.

Figure 6. The area of vegetation gain and loss, as well as the area not changing, between image dates was calculated for Petaluma River Marsh

using NDVI classifications.
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consider the methods used in this study to be semiauto-
mated, even though the amount of manual work is on par
with automated supervised classification techniques. The
only data needed are NIR and red bands, which can be
obtained using CIR imagery. Often, this is the most
affordable option for monitoring.

In an ideal situation, remotely sensed images are
acquired when decisions can be made about imagery spec-
ifications and field data collection that will make change
detection accurate and applicable to the monitoring of
a restoring wetland. When collecting imagery to monitor
marsh restoration, it is important to acknowledge the mul-
tiple purposes for which the imagery will be used (vegeta-
tion type mapping, vegetation type change detection,
channel delineation) and to choose image specifications
that are optimal for as many purposes as possible. For
accurate change detection, imagery should have (1) the
same spatial and spectral resolution across years, (2) pre-
cise spatial registration across years, (3) precise radiomet-
ric/atmospheric calibration, and (4) similar phenological
states (Lu et al. 2004). These characteristics affect the data
accuracy from each image date, as well as the comparison
between years. Precise spatial registration for each year
can be attained by collecting many GCPs (5–15) and using
the combination of four or more that renders the highest
accuracy (or lowest RMSE value) for each year. Imprecise
registration across years, which is often easily noticed
visually as linear features falsely disguised as change, can
produce large errors in change detection analysis (Singh
1989; Dai & Khorram 1998). For vegetation change detec-
tion, imagery should be acquired at similar phenological
states across years and should be timed with daily tides
and the sun, especially if a particular level of detail regard-
ing the channels, mudflats, or low-lying vegetation is
desired. This will also keep effects from the water level and
sun angle consistent across time because sunlight and shad-
ows can cause inaccuracies in the detection of vegetation.

In reality, however, conditions for monitoring salt
marshes are less than ideal, both with site-specific issues
and with use of historical imagery. Although some wetland

areas are relatively amenable to image processing, tidal
ecosystems are challenging because the marshes are inun-
dated by high tides that obscure boundaries of vegetation
and mudflats. Our study illustrates the many challenges of
monitoring with a limited budget. We used preexisting data
(e.g., historical imagery) that were collected for purposes
other than detecting vegetation change, so the image speci-
fications, flight times, and ground reference data might not
exist. Thus, features like pixel size, number of tiles, time of
year, and plant phenology were not consistent across image
dates. For most years, we had no reliable field data. Despite
these shortcomings, we were able to document vegetation
change with adequate accuracy.

Although aerial photography is a relatively inexpensive
way to acquire high-resolution remotely sensed imagery,
often costing less than its satellite-borne counterparts,
there are problems inherent in airborne imagery, all of
which we faced in this study. The original pixel sizes of the
images were not identical and ranged from 7 to 25 cm.
Image dates were resampled up or down to produce 20-
cm-pixel sizes across all images. Resampling to a larger
pixel size resulted in data loss but was necessary to gain
consistency in spatial resolution across image dates. Regis-
tration problems are often difficult to overcome with ultra

Table 2. Error matrices and accuracy measures were generated for vegetated and nonvegetated classifications for the 2003 and 2004 image dates.

Ground Data

TotalNonvegetated Vegetated

2003a

Map data Nonvegetated 12 14 26
Vegetated 22 146 168
Total 34 160 194

2004b

Map data Nonvegetated 7 2 9
Vegetated 4 150 154
Total 11 152 163

aOverall accuracy: (12 1 146) ¼ 158/194 ¼ 81.4%; producer’s accuracy: nonvegetated ¼ 12/34 ¼ 35.3%; vegetated ¼ 146/160 ¼ 91.3%; user’s accuracy: nonvegetated
¼ 12/26 ¼ 46.2%; vegetated ¼ 146/168 ¼ 86.9%.
bOverall accuracy: (7 1 150) ¼ 157/163 ¼ 96.3%; producer’s accuracy: nonvegetated ¼ 7/11 ¼ 63.6%; vegetated ¼ 150/152 ¼ 98.7%; user’s accuracy: nonvegetated ¼
7/9 ¼ 77.8%; vegetated ¼ 150/154 ¼ 97.4%.

Figure 7. The overall accuracy of the optimum NDVI threshold did

not vary much within the ±3 threshold buffer, illustrating that chang-

ing the NDVI threshold slightly does not cause the accuracy of the

classification to change drastically.
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high-resolution imagery such as the 0.2-m imagery used in
this study; however, we avoided this problem by using
multiple high-accuracy GCPs and observed no obvious
signs of misregistration in the change maps.

In order to get the extremely high spatial resolutions
often required when mapping wetland vegetation, it is
often necessary to collect several tiles to cover a large wet-
land area. These tiles can have varying radiometric and
sensor gradients due to camera tilt and image distortion,
both of which are common in aerial photography, creating
seams across the mosaicked tiles and complicating the reg-
istration, classification, and change detection procedures.
The 1999 mosaicked image provides an example of this
issue, where we had to apply NDVI to each of the three
tiles separately, choose a separate NDVI threshold for
each tile, and recode for each accordingly. Doing this
removed error caused by radiometric differences between
the three tiles. Likewise, because we classified each image
date individually, we removed error caused by radiometric
differences between the annual images. The use of satel-
lite imagery would overcome many of these problems,
particularly when higher resolution data become more
available; however, no satellite images were available for
analysis and comparison in this study.

While the imagery was acquired at roughly the same
seasonal time each year, issues arose with differing pheno-
logical states, tidal level, and sun angles. Even though the
2001 image date was flown during the same month as the
majority of the other images, we were unable to use
NDVI to distinguish between bare and vegetated areas
because many of the plants appeared to have senesced by
the time of the image acquisition. Live vegetation reflects
highly in the NIR region, which results in larger NDVI
values; however, many of the areas that appeared to be
vegetated in the CIR image showed low NIR reflectance
values. Differences in the growth cycle due to climatic var-
iability can cause differences in phenology and recruit-
ment in tidal salt marshes between years (Callaway &
Sabraw 1994; Noe & Zedler 2001a,b). Although we were
not present to ground reference the site in 2001, rain and
temperature data suggested a hotter, drier environment
earlier in the season (University of California Statewide
Integrated Pest Management Program, Agriculture and
Natural Resources 2006), which would have resulted in
increased plant stress due to higher salinity levels and pre-
mature tissue senescence. Greater loss was measured
between 2000 and 2002 than between other years, suggest-
ing that the premature senescence in 2001 also affected
vegetation growth in 2002.

We experienced false change because of tidal differen-
ces, algae occurrences, and shadows. The 2003 image was
acquired at low tide to capture all low-lying Spartina
foliosa on the mudflats, whereas 2004 image was flown
when the channels approached bank-full for the purposes
of delineating channels. This led to detection of false
change along the channel margins. Applying a ‘‘mask’’
over the channels could alleviate this problem but might

be outside the technical expertise of some restoration
projects. We also encountered the presence of algae on
mudflats, which was often classified as vegetation. Algal
coverage is not inherently an image error but is instead
a land cover residual that complicates the differentiation
between vegetated and bare mudflats; oftentimes, wide-
spread algal growth occurs before vascular plant coloniza-
tion. Because algae are photosynthetically active, they
reflect strongly in the NIR and can complicate vegetation
discernment when ground reference data are not avail-
able. Because we did not have ground reference data for
the majority of years since tidal restoration, we were
unable to identify areas with high algal cover conclusively
and might have overestimated vegetative cover in some
years. However, many photos and conversations with
researchers involved in the tidal restoration aided our
identification of years and particular areas of high algal
cover. Further investigation into the spectral qualities of
algae would allow for remote discrimination between
algae and vascular vegetation. Finally, shadows from an
electrical tower located along the center levee of the site
and the deep linear features created from prerestoration
dredging resulted in overestimation of vegetated areas in
some years, particularly in 1995. Altering the threshold
levels to reduce the influence of shadows erroneously
decreased the cover of vegetation on the levees; therefore,
we had to compromise on a threshold value that mini-
mized the influence of shadows yet maintained an accu-
rate representation of vegetation.

Accurate change detection methodology includes docu-
menting (1) area change and change rate, (2) spatial distri-
bution of changed types, (3) change trajectories of land
cover types, and (4) accuracy assessment of change detec-
tion results (Lu et al. 2004). Our methodology captured all
four of these requirements and differentiated vegetated
and nonvegetated areas accurately, even though there
were no ground reference data for years prior to 2003.
The accuracy rates of 81 and 96% for 2003 and 2004,
respectively, are considered high (Congalton & Green
1999) and were achieved even with the use of handheld
GPS units, with horizontal error ranging from 3 to 6 m
with WAAS positional correction at the study site. Due to
budget constraints, use of handheld GPS units was
required over the use of more accurate units. WAAS
improved our position accuracy in this site, as there was
an open sky and a clear view of the southern horizon.
Without these criteria, accuracy could be worsened as the
GPS unit looks for the WAAS signal. In addition, WAAS
correction is only available for North America, and while
the European Geostationary Navigation Overlay Service
is WAAS’s equal in Europe, all other international areas
will not have access to the differential correction that
these services provide. The 2003 and 2004 ground refer-
ence data were initially intended for accuracy assessment
of detailed vegetation type maps. Six vegetation types
were combined into one vegetation class and two nonve-
getation types (water and mudflat) were combined to one
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nonvegetation class; therefore, nonvegetated points were
under-represented in this study, which contributed to the
low accuracies for the nonvegetation classes. The pro-
ducer’s and user’s accuracies for both 2003 and 2004 were
higher for the vegetated areas than for the nonvegetated
areas. This difference is most likely due to more points
falling into the vegetated zones, thus allowing for better
representation. Additionally, the data were collected for
species diversity studies and therefore consisted of a plot
size (3 m radius) that was larger than typical accuracy
assessments require. Because the 3-m radius plots were
much larger than the pixel size of the 2003 and 2004 image
dates (20 cm), it is difficult to compare the units of mea-
surement. Even with this potential error, the accuracy
rates calculated for this study in vegetated areas are con-
sidered to be high (Congalton & Green 1999). Further-
more, changing the optimal NDVI threshold slightly,
which might happen with different human photointerpr-
eters, did not cause the overall accuracy to change drasti-
cally, as illustrated by the relatively shallow slopes
between thresholds in. This may indicate that postclassifica-
tion change detection does very well with this site, which is
the case in many change detection studies (Lu et al. 2004).

Although change detection studies using remote sensing
can take much time and resources, they are usually more
cost-effective than field-based studies for quantifying
landscape-scale change across an entire restoration site.
For this study, time and resources were spent on three
major efforts: image acquisition (i.e., the flyover), field vis-
its to gather ground data, and methods (including georec-
tification, NDVI transformation, recoding, image
comparison, area calculations, and accuracy assessment).
Each effort used various levels of time and resources, and
costs varied between $1,500 and $3,000. Costs would
increase for larger sites and if certain services were pur-
chased in addition to simple image flyover and acquisition.
For example, georectification, orthorectification3, and
photogrammetry4 would cost upward of $50,000 on much
larger sites (S. Siegel 2006, Wetlands and Water Resour-
ces, San Rafael, CA, personal communication). The study
required one field visit to gather accurate benchmark
position information to use for georectification and about
6 person-days of ground referencing for 2003 and 2004
image dates each. Field personnel used handheld GPS
units to collect location information of field points, which
cost between $300 and $600 each. Field personnel
recorded all species and absolute percent cover for all
ground reference and accuracy assessment data. The time
spent performing methods, including georectification,
NDVI transformation, recoding, image comparison, area
calculations, and accuracy assessment, was roughly 6 per-

son-hours per image date. This time estimate would
increase if more detailed image processing, such as vegeta-
tion classification and mapping, was performed. A study
using satellite imagery would expect to spend roughly the
same amount of time and resources as this study; however,
because satellite imagery might need a higher level of pre-
processing (i.e., atmospheric correction) before imagery
can be used for analysis, satellite imagery might require
additional costs.

Conclusions

Remote monitoring of vegetation is useful where access
on the ground is constrained by soft sediment, remote
location, or the presence of endangered species. Remote
sensing allows assessment of patterns of composition, con-
figuration, diversity, and structure of land cover types. In
addition, attributes of restoration sites are readily com-
pared with reference sites (Parker 1997). Colonizing spe-
cies can be tracked accurately in a cost-effective way
when remote sensing is combined with ground-based sur-
veys. Acquiring images over the long term allows capture
and understanding of vegetation colonization dynamics
with spatially explicit data. Without annual imagery, we
would have missed unpredictable changes such as prema-
ture senescence in 2001 and increased colonization
between 2002 and 2003. Although completely bare when
the levee was breached in 1994, the site was 90% vege-
tated by year 10 as measured by our relatively inexpen-
sive, semiautomated, change detection technique.

Implications for Practice

d Remote sensing offers accurate automated methods
for detecting change in restored wetlands.

d Vegetation change detection is a powerful indicator
of restoration success.

d Remote sensing in tidal environments necessitates
particular considerations to maintain consistency
among image dates for accurate vegetation change
detection.
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