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Sudden oak death (SOD) has caused widespread mortality in a
number of tree and shrub species throughout coastal Califor-
nia. As a result, canopy changes are directly visible from
remotely sensed imagery. To quantify changes in horizontal
canopy structure to the oak woodlands in China Camp State
Park, California, USA, a heavily hit area, we developed a
novel change detection technique that tracks changes to
individual objects. Using 4-band, 1 m spatial resolution aerial
photography, we classified four annual images (2000 to 2003)
with object-based image analysis (OBIA) and employed a GIS
for our change detection technique. We identified 352 gaps
that contained SOD mortality in 2000 and persisted through
2003. Their median areas and perimeters did not change
significantly in that time. However, those gaps that increased
in size tended to be smaller than those that decreased,
indicating increased mortality in newly infected areas. Our
new change detection method allowed us to monitor these
gaps one-by-one, revealing ecologically meaningful results that
would otherwise be obscured in a landscape-scale analysis.
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The forest pathogen Phytophthora ramorum has had a
significant impact on the forests of central coastal California.
Since it was first reported in 1995, it has killed hundreds of
thousands of trees, including coast live oak (Quercus agrifolia),
tanoak (Lithocarpus densiflorus), and California black oak
(Q. kelloggii) (Rizzo et al., 2002; Frankel et al., 2008; Shoemaker
et al., 2008). While the pathogen can take anywhere from 2 to
20 years to kill an individual (McPherson et al., 2005), the
final decline of the trees has created new openings through-
out the affected forests. The pathogen also causes rapid
browning of the crown when a canker infection overwhelms
the tree, giving it the name “Sudden Oak Death” (SOD)
(Rizzo and Garbelotto, 2003). This swift color-change and
eventual defoliation of the crown allows the use of remote
sensing in the detection of this decline and the tracking of
the mortality caused by its progression through the forest
(Guo et al., 2007; Kelly, 2003; Kelly and Liu, 2004; Kelly
and Meentemeyer, 2002; Kelly et al., 2004; Liu et al., 2007).
Treating affected trees and preventing spread of the
pathogen on landscape-scales has proved difficult (Davidson
et al., 2005). Given this reality, the structure of forests
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following an infestation has become an important ecological
question and one well-addressed by a remote sensing
approach. We wanted to investigate the resiliency of the
forest canopy in the face of widespread disturbance caused
by SOD.

C3:*$30D3)#-)60*80E&)+#'&;3045&)63
Remote sensing of forest diseases is a relatively new but
developed field (Franklin et al., 2000; Pinder and McLeod,
1999). Much of the work has been done on coniferous
forests, and there have been a few studies that have looked
at pathogens in broad-leaved stands (Everitt et al., 1999;
Gong et al., 1999; Guo et al., 2007; Kelly et al., 2004; Liu
et al., 2006b). SOD, a relatively new disease, lends itself
well to multi-temporal study using remote sensing. Early
research focused on monitoring the affected forests (Kelly
and McPherson, 2001; Kelly and Meentemeyer, 2002) with
later efforts working on increasing the accuracy of correctly
identifying dead trees (Guo et al., 2007; Kelly et al., 2004;
Liu et al., 2006b; Pu et al., 2008; Sun et al., 2005).

The field of remote sensing has also progressed since
work on SOD began, particularly with the broader use of
object-based image analysis (OBIA). In the past ten years,
three factors have conspired to bring about the development
of OBIA (Hay et al., 2005):

1. Computationally intensive OBIA methods are now more
accessible given the increase in computing power.

2. High resolution imagery makes object delineation easier for
humans and has inspired the development of programs that
can assemble pixels into discreet objects.

3. As spatial resolution has increased, individual pixels may no
longer be representative of one or more objects but rather a
component of a larger feature.

The problems associated with within-object variability is not
a new phenomenon (Martin and Howarth, 1989), but the
salt-and-pepper effect of pixel-based classifiers is a particu-
lar issue when attempting to delineate tree crowns (Kelly
et al., 2004). Object-based classification methods have been
proven to significantly increase classification accuracy
relative to pixel-based methods when mapping overstory
mortality in oak woodlands, in part due to their ability to
handle within-object variability (Guo et al., 2007). In this
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study area, with this data, previous research has shown
pixel-based methods to be inferior to object-based methods
(Kelly et al., 2004; Guo et al., 2007).

OBIA has seen broad application in the field of environ-
mental remote sensing. In a Virginia-based study, it was
successful in delineating coniferous, deciduous, and mixed
forest stand boundaries using either small-footprint lidar
data (0.46 m footprint) or high resolution (1 m) 16-band
hyperspectral data (van Aardt and Wynne, 2004). In Siberia,
OBIA has also been used to classify areas of deforestation by
incorporating proximity to linear features such as roads in
the classification (Hese and Schmullius, 2006). In New
Mexico, object-based methods have aided in mapping shrub
encroachment and its intensity by segmenting the image at
varying scales, identifying individual shrubs at finer scales,
and then using that data to determine shrub density at
coarser scales (Laliberte et al., 2004). Another study used
OBIA to map vegetation types (Yu et al., 2006). In the case
of this study, OBIA is particularly suited to identifying dead
trees in the forest canopy. By segmenting an image into
discreet objects, we can not only identify the dead trees, but
also outline the extent of their reach.

OBIA methods have also been applied to change
detection, but to a lesser extent. One application has been
the detection of structural damage due to human conflicts
or natural disasters like earthquakes. Object segmentation
along with nearest neighbor and fuzzy classification tech-
niques allowed researchers to use 1 and 2 m Ikonos imagery
to isolate structures damaged by conflict in Macedonia and
the West Bank (Al-Khudhairy et al., 2005). Researchers
investigating the aftermath a 1999 earthquake in Turkey
found similar success using OBIA in identifying buildings
with damage visible from QuickBird imagery (Bitelli et al.,
2004). Finally, OBIA has been used with reasonable success
in monitoring deforestation in a protected area of the
Democratic Republic of Congo. Desclée et al. (2004) were
able to produce a map of deforestation with 84 percent
accuracy by using object-based methods on a multi-date
image.

The use of OBIA in change detection, however, is not
without challenges. Blaschke (2005) outlines a number of
these difficulties:

1. The image’s resolution must be sufficiently high to detect
the objects of interest, let alone changes that pertain to them.

2. Quality image registration is extremely important. Without
this, many perceived changes between two images may
simply be due to misregistration.

3. Current accuracy assessment methods are not satisfactorily
integrated into the new object-based paradigm. Future
research, the paper warns, must take these three issues into
account.

While relatively new, object-based change detection
techniques are widely varied. Fundamental categories of
change detection techniques have been outlined in an
extensive review (Lu et al., 2004). Historically, change
detection has examined changes on a per pixel basis. OBIA
methods can be applied to existing algebraic (image differ-
encing, image regression, etc.) and transformation (principle
component analysis, tasseled cap, etc.) approaches, but they
can also be applied before any change detection procedures
are employed. This paper implements an “Integrated GIS and
remote sensing method” by which the segmentation and
classification are carried out first, and the change detection
is then completed using GIS. It also draws from the spa-
tiotemporal model proposed by Worboys (1992), where the
temporal dimension is orthogonal to the 2D representation.
This approach is more flexible than a space-time composite
(Yuan, 1999) and provides ready access to ancillary data.

Our GIS and object-based approach also allowed us to track
individual objects as they changed over time, giving us more
detailed data that can express more ecological meaning.
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Sudden oak death affects two forest types in coastal Califor-
nia, redwood-tanoak forests and coastal California oak
woodlands dominated by Q. agrifolia and Umbellularia
californica (Rizzo and Garbelotto, 2003). SOD has affected
Q. agrifolia with larger stem diameters more than smaller
ones, a characteristic of the disease that has pushed the size
distribution of affected populations down. Previous work on
gap dynamics in California oak woodlands suggests that
oaks may need a shrub-dominated stage for successful
recruitment (Callaway and Davis, 1998), but few studies to
date have examined such events following SOD (but, see
Brown and Allen-Diaz, 2008).

Most research into gap dynamics in oak woodlands has
examined recruitment (Asbjornsen et al., 2004b; Callaway
and Davis, 1998) and microclimatic effects (Asbjornsen
et al., 2004a) with few focusing on changes in canopy
structure (Clinton et al., 1993). With SOD removing larger
trees from the canopy in a spatially contagious pattern
(Kelly and Meentemeyer, 2002; Kelly et al., 2008), the
openings are concentrated in some areas while relatively
sparse in others, creating a gradient of disturbance.

We used a new object-by-object (OBO) change detection
technique to quantify changes in horizontal canopy structure
of individual gaps following mortality caused by P. ramorum.
We expected the OBO technique to reveal more detailed infor-
mation about the canopy gap structure through time than a
landscape-only approach. Specifically, we used OBIA to delin-
eate, classify, and structurally quantify individual changes
in canopy gaps between 2000 and 2003 that were caused
by P. ramorum mortality in 2000. As mortality continued
between 2000 and 2003, we anticipated that gap size would
continue to increase. We considered lateral recruitment a
factor that would potentially balance out some of the increases
in gap size due to ongoing mortality. Finally, we predicted
that larger gaps will continue to grow as a result of mortality
and increasingly stressful microclimatic conditions, while the
smaller gaps will decrease in size.
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The study area for this project is 1,340 ha of a forested
peninsula in eastern Marin County (Figure 1). Jutting east-
ward into San Pablo Bay, the woodlands on the peninsula
are managed in the northwest by Marin County Open Space
as San Pedro Ridge Reserve, in the southwest by the City of
San Rafael as Henry A. Barbier Park, and in the east by the
California State Parks as China Camp State Park. While
under separate jurisdictions and different official names,
these three areas are commonly referred to as China Camp.
A large portion of the open space on the peninsula features
near even-aged stands containing Q. agrifolia, Q. kelloggii,
and Q. lobata along with Arbutus menziesii and Umbellu-
laria californica. Of these, Q. lobata is the only non-host
species for P. ramorum. These stands are spread across a
landscape with moderate to steep topography rising from sea
level to over 300 m in elevation.

(:&63%B0!'H,-#-$-*)0&)+0C36-#$%&$-*)
We acquired digital imagery for China Camp annually from
2000 to 2003 through private contractors (Positive Systems,
Inc. and ARINC, Inc.). The imaging system was an ADAR 5500
that has an SN4, 20 mm lens with four mounted cameras with
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four corresponding spectral bands (Blue: 450 to 550 nm,
Green: 520 to 610 nm, Red: 610 to 900 nm, and Near Infrared
(NIR): 780 to 920 nm). The aircraft was flown at an average
altitude of 2,205 ft. AGL, giving each 1,000 m ! 1,500 m frame
an average ground spatial resolution of 1 m. Each frame has
35 percent side- and 35 percent end-lap. The imagery used in
this study was acquired between the months of March and
May for each year both to reduce the confusion between dead
trees and California buckeye, a summer deciduous tree, and to
capture the springtime canopy cover change caused by SOD.

The frames for each year were mosaicked and georefer-
enced using a 6-inch resolution digital orthophotograph of
the county provided by the Marin Municipal Water District.
Positive Systems registered each year to an accuracy of
0.305 m. Further registration was performed to minimize
interannual variations according to Liu et al. (2006a). This
automated registration technique uses local area-based
control point extraction and a local transformation model
(the piecewise linear model). All images were registered to
the 2001 image. Interannual RMSE was calculated in ERDAS
Imagine® software (ERDAS, 1999) using 10 control points.
RMSE between 2000 and 2001 was 1.83 m, 2.16 m for 2001
to 2002, and 3.02 m for 2001 to 2003.

(:&63%B0F)5&)'3:3)$0&)+0D36:3)$&$-*)
A number of indices and enhancements were applied to the
mosaicked and registered images using ERDAS Imagine®

software (ERDAS, 1999) and evaluated. Of these, two were
useful: Normalized Difference Vegetation Index (NDVI) and
intensity, hue, and saturation (IHS). NDVI was originally

developed for Thematic Mapper data from the Landsat
satellites (Crist, 1985), but ADAR’s similarity in spectral
resolution allowed us to employ it. The second enhance-
ment, IHS, recoded the original NIR-red-green-blue image into
intensity-hue-saturation. All of these layers, including the
original four-band imagery, were then loaded into Definiens
Professional 5.0 (Definiens, 2006), an object-based image
analysis software package also known as eCognition®. See
Table 4 for a detailed list of which bands, enhancements,
and other features that were used in the classification.

The image was segmented at two scales (scale " 15 and
scale " 8) using all four spectral bands. NIR was given the
highest weight in segmentation (1.0) due to the spectral
differences between live and dead crowns. The remaining
layers (RGB) were all weighted lower (0.3). The second level
(scale " 8) was fine enough to isolate individual dead trees
from the surrounding canopy (Figure 2).

4/&##-8-'&$-*)0*80$530(:&63%B
The larger scale (scale " 15, Level 15) was used to mask
non-vegetation objects from areas of vegetation. Non-vegeta-
tion objects most often consisted of urban land cover
(houses, roads, etc.) but also included areas of bare soil and
hiking trails. At the smaller scale (scale " 8, Level 8, Figure
3), the objects from Level 15 were broken into more detailed
classes. The classes for the 2000 image included Trees, Dead
Trees, Dead Trees (Neighbor), Not Vegetation, Other Vegeta-
tion, and Shadows; although Shadows and Other Vegetation
were merged for the purposes of gap analysis. Data from Liu 
et al. (2006b) was brought in as a thematic layer to enhance
classification by reducing misclassification of deciduous
trees as dead trees (Dead Trees). Dead Trees also used the
Ratio feature in eCognition®, where the ratio of the spectral
feature of interest is compared to all other spectral bands and
enhancements from the image. Dead Trees (Neighbor) used
the same shape and spectral rules as Dead Trees, but also
used a “Neighbor to Dead Trees” rule to capture mortality
that had not been included in the thematic layer from Liu
et al. (2006b). For a detailed look at the use of topological
relationships in OBIA, see Liu et al. (2008). The Dead Trees
and Dead Trees (Neighbor) classes consisted of standing dead
trees; trees with catastrophic failures or snapped stems were
classified as Other Vegetation. In this study, overstory
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mortality is assumed to be caused by P. ramorum based on
the findings of Swiecki and Bernhardt (2002).

The Dead Trees and Dead Trees (Neighbor) classes were
extracted in a GIS and intersected with polygons from a 
two-class reclassification scheme: (a) Trees, which contained
the original Trees class, and (b) Not Trees, which contained
the original classes Other Vegetation, Not Vegetation,
Shadows, and Dead Trees. This was done to determine
which gaps contained trees killed by P. ramorum so as to
track them in the subsequent imagery (2001 to 2003). To
assess classification accuracy, we generated 50 random
points per class using the Hawth’s Tools (Beyer, 2004) for
ArcMap® (ESRI, Inc., Redlands, California) across all five
classes (Trees, Other Vegetation, Not Vegetation, Dead Trees,
Dead Trees (Neighbor), and Shadows) for the year 2000 and
two classes for 2001 to 2003 (assessing the two-class reclas-
sification: Trees and Not Trees). The status of those points
was visually assessed from the digital imagery. A two-meter
buffer was included around these points to account for up to
two pixels of variation in the segmentation process.

D;&$-&/0!)&/B#-#0&)+0=%*'3##-)60*80I&;07&$&
Polygons classified as gaps (Not Vegetation, Other Vegeta-
tion, Dead Trees, Dead Trees (Neighbor)) were merged into
continuous objects and exported from eCognition® as raster
data. Once exported, Fragstats (McGarigal et al., 2002) was
used to determine each individual gap’s area, perimeter and
Euclidean nearest neighbor (ENN). The raster output from
Fragstats for each year was then converted to a shapefile and
imported into a PostGIS database (Refractions Research,
2005), an open-source spatially-aware relational database. In
PostGIS, we intersected gap polygons from 2000 with
polygons classified as Dead Trees and Dead Trees (Neigh-
bor). We isolated the gap polygons from the 2000 image that
contained dead trees and intersected them with gap poly-
gons from 2001, 2002, and 2003 using a Perl script and the
“intersects” function in PostGIS. Those that spatially
intersected were uniquely identified. The output of this

script was then used to pair each individual gap to its
Fragstats data. See Figure 4 for a visual representation of
these methods.

Many gaps did not split or merge over the four years
(Figure 5; Example B). But there were gaps that did split or

!"#$%&'K) L':569'7+.%2'"55$12%.2"-#'2+&'/&2+631'$1&3
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merge (Figure 5; Example A). The landscape metrics of those
that split or merged needed additional processing. These
gaps had been uniquely identified using the Perl/PostGIS
processing detailed above, creating an association of gaps
within a year that shared an intersection with a polygon or
polygons from another year. Data from these associations
were aggregated: areas and perimeters were summed, ENN
distances were averaged, and shape index (SI) was calculated
from the summed areas and perimeters. These landscape
metrics were then analyzed over three different time scales:
annually, biannually (2000 to 2002 and 2001 to 2003), and
over the entire study (2000 to 2003).

Gaps over 3 ha were discarded from further analysis as
they were primarily caused by urbanization. Three hectares
is above what has been previously considered in the litera-
ture (e.g., Hubbell et al., 1999; Yamamoto, 1993), but this
threshold was kept due to the fractal nature of many of the
larger (!0.2 ha) SOD containing gaps.

D$&$-#$-'&/0@3#$#
The resulting data for all measures of gap structure were
significantly non-normal by the Wilks-Shapiro W test in JMP
5.1.2 (SAS Institute, Inc., 2005). As a result, parametric
methods were discarded in favor of the Wilcoxon rank sum
test and Hodges-Lehman estimators in R (R Development
Core Team, 2008), both of which are robust in the face of
non-normality. As such, all results for these tests listed
below that indicate significant changes in particular metrics
are median changes.

We also investigated how changes in landscape metrics
over the study period were influenced by gap characteris-
tics in 2000. For example, we were interested in how gap
metrics in 2000 may influence changes in gap area over
the course of the study period. Wilcoxon rank sum tests
show significant differences in all metrics between gaps that
increased in size compared to those that decreased in size
over the study period. To identify which metrics in 2000
had the most influence on the change in metrics over time,
we used recursive partitioning and tree pruning to deter-
mine the most significant effects (R Development Core
Team, 2008). Two models were constructed, one with area,
perimeter, and ENN and the other with SI and ENN (SI is
derived from area and perimeter, so the three could not be
combined in the same model).

C3#,/$#
Overall accuracies for the classified images were 95 percent
for 2000, 97 percent for 2001, and 98 percent for 2002 and
2003 (Tables 1 and 2). Most classes had high accuracy in
classification. Dead Trees (Neighbor) in the 2000 image is a
minor exception, with that class most often confused for
Other Vegetation or Shadows. Overall Kappa statistics for
the images were 0.94 for 2000, 0.9417 for 2001, and 0.9608
for 2002 and 2003.

The classified and post-processed imagery returned
a total of 352 gaps and associations that contained SOD
mortality in 2000 and persisted until 2003. In 2000, those
gaps occupied 10.736 ha and made up 44.13 km of forest
edge. In 2003, those numbers dropped to 6.122 ha and
34.682 km, respectively. This landscape level data, however,
only describes part of the story. The individual gap areas,
perimeters, shape indices, and ENN measurements show
range of significant changes that varies depending on the
time scale over which they were tested.

!)),&/0@-:30D'&/3
We first analyzed the gaps’ and associations’ landscape
metrics on an annual time scale (e.g., 2000 to 2001). Between
2000 and 2001, area of the individual gaps and associations

*L>RN () ,SC!T;@SC 8L*U@V !SU ,RL;;@!@,L*@SC S! ?EEEW'*' " *UNN; H'SX' " S*YNU XNZN*L*@SC H
I* " INLI *UNN; H'I*C' " INLI *UNN; FCN@ZY>SU GH'CX' " CS* XNZN*L*@SC H';' " ;YLIS[;

T OV DT DTN NV S Total Omission (%)

T 49 0 0 0 0 1 50 98
OV 0 46 1 0 2 1 50 92
DT 1 1 48 0 0 0 50 96
DTN 0 4 0 43 0 3 50 86
NV 0 1 0 0 49 0 50 98
S 0 0 0 0 0 50 50 100
Total 50 52 49 43 51 55 285
Commission (%) 98 88.46 97.96 100 96.08 90.91

Overall Accuracy " 95% (285/300), Khat " 0.94
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Class Trees Not Trees Total Omission

Trees 2001 50 0 50 100%
2002 50 0 50 100%
2003 49 1 50 98%

Not Trees 2001 3 47 50 94%
2002 2 48 50 96%
2003 1 49 50 98%

Total 2001 53 47 97
2002 52 48 98
2003 50 50 98

Commission 2001 94.34% 100%
2002 96.15% 100%
2003 98% 98%

2001 2002 2003
Overall 97% 98% 98%
Khat 0.9417 0.9608 0.9608

significantly increased by 11 m2; perimeter, SI, and ENN did
not show any significant changes. The next year (2001 to
2002), no significant changes occurred in any metric. For the
final year (2002 to 2003), both area and perimeter decreased
significantly (12 m2 and 8 m, respectively) while SI signifi-
cantly decreased by 0.113. ENN for the final year increased by
0.83 m (Table 3).

J&%-&"/30@-:30D'&/3
When analyzing different blocks of time, we noticed a
different set of changes in the landscape metrics. For the
first two year time span (2000 to 2002), three metrics
showed significant increases: area (14 m2), perimeter (6 m),
and ENN (0.63 m). When the same time span was shifted to
the latter dates of the study (2001 to 2003), only ENN
distances increased (0.94 m) while the rest decreased (area
by 9 m2, perimeter by 6 m, and SI by 0.09). These different
two year windows disparate results are likely heavily
influenced by their composite years, with 2000 to 2001
and 2002 to 2003 contributing the bulk of the changes as
no metrics between 2001 to 2002 showed any differences
(Table 3).

We then integrated the results over the entire time span
of the study (2000 to 2003), and another trend emerged.

Perimeter and area drop out of significance while ENN
distances increased by 0.93 m and SI decreased by 0.097
(Table 3).

()8/,3)'30*8093$%-'#0-)0KLLL0*)093$%-'#0-)0KLLM
We tested two recursive partitioning models with tree
pruning to determine how gap area in 2000 influenced gap
area in 2003. One model (SI and ENN) kept both SI and ENN
as significant predictors of change in area between 2000 and
2003, but the splits hold little sensible explanatory power.
The other model (Area, Perimeter, and ENN) kept area as the
most significant predictor of change in area, dropping
perimeter and ENN. In this model, canopy gaps greater than
or equal to 147.5 m2 decreased in size while those smaller
than this number increased. This confirms the results of the
Wilcoxon tests for increasing and decreasing gaps, but
shows that only area is significant when the other metrics
are included in the model.

7-#',##-*)
This new change detection technique allowed us to track 352
canopy gaps and gap associations individually and provided
us with more detailed information about the woodland’s

*L>RN D) 8NI@LC I@!!NUNC,N; @C ZL< 8N*U@,; \NLU *S \NLU F.GH' LCI SXNU XLU\@CZ *@8N !UL8N; F=G

Area (m2) Perimeter (m) Shape Index ENN (m)

2000–2001 11.00** — — —
2001–2002 — — — —
2002–2003 !12.00** !8.00** !0.11** 0.83***

—: no significant differences* p " 0.05 ** p " 0.01 *** p " 0.001

(a)

Area (m2) Perimeter (m) Shape Index ENN (m)

1 year 2000–2001 11.00** — — —
2 years 2000–2002 14.00*** 6.00* — —

2001–2003 !9.00* !6.00* !0.09** 0.94***
3 years 2000–2003 — — !0.097** 0.93***

—: no significant differences* p " 0.05  ** p " 0.01  *** p " 0.001

(b)
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changing spatial structure than a landscape-only method.
Tracking changes to objects of varied sizes would not be
possible using traditional pixel-based classification methods,
nor would it be possible using landscape-scale quantification.
Our results chart the changes of gaps at a variety of scales.
While other fields have explored tracking objects through
time (Croitoru et al., 2006), it is relatively new to ecology.
Our study adds a new approach to studying numerous small-
scale changes on the landscape in great detail.

The large number of gaps that contained one or more
dead trees in 2000 is indicative of the impact SOD has had
on the over 900 ha of forested land in the China Camp area.
The spatially contagious nature of the disease should log-
ically lend itself to increasing gap size over the course of
the study, but our results indicate the resiliency of the
overall canopy structure at China Camp. This pathogen has
increased the dynamism of the horizontal canopy structure,
but the forest has rebounded relatively quickly to fill in the
gaps shortly after they open.

Previous research into the impact of SOD on forest
structure has been limited to a landscape-only assessment
(Kelly and Meentemeyer, 2002; Liu et al., 2007), revealing
the pathogen’s spatially contagious nature. But these studies
did not reveal details on how the disease is affecting the
horizontal canopy structure of the forest. Furthermore, this
study is the first to study the changes of individual gaps
over a multi-year time span. The use of OBIA techniques
gave us high classification accuracies for all of our images.
Our results agree with a previous study at the same site
using the same imagery (Guo et al., 2007) and also are in
line with other OBIA classification schemes using similar
imagery (Desclée et al., 2004).

OBIA provided us with ecologically meaningful objects,
including polygons that outlined the crowns of still-standing
dead trees that were absent any salt-and-pepper effects from
bare soil showing through the bare branches. Additionally,
we chose OBIA for its ability to segment and classify at
different scales. Many of the dead trees were spectrally
similar to some of the rooftops of houses in the adjacent
residential areas. By first segmenting and classifying at a
larger scale (scale ! 15), we were able to mask the residen-
tial areas in the Not Vegetation class using hierarchical
classification rules. We selected our lower scale parameter
(scale ! 8), based on the quality of segmentation for tree
crowns. These two scales complimented each other through
the hierarchical rules: The higher parameter undersegmented
dead tree crowns (lumping them in with other vegetation)
while properly segmenting residential areas. The lower scale
parameter then properly segmented the dead tree crowns
suspected to be caused by SOD.

We expected gaps containing SOD to increase in size
over the course of the study, but the lack of significant
difference between 2000 and 2003 in median individual gap
area disproves this hypothesis. The total gap area affected
by SOD in 2000 decreased by a large amount over the study
period (almost 4 ha), but the median gap size for the indi-
vidual gaps did not change. In fact, only shape index and
Euclidean nearest neighbor differed between 2000 and 2003.
The change in SI indicates that the gaps are becoming more
regular in shape. This change could be due to trees with
more edge exposure dying off, but it is more likely that the
more irregular gaps’ lobes are being closed by the surround-
ing trees. The median increase in ENN is another sign that
the forest is responding rapidly, filling small gaps that may
have been present in 2000 but did not persist through the
study period to 2003.

The differing results from the varying time frames (1, 2,
and 3 years) and the varying applications of those time
frames (e.g., 2000 to 2002 and 2001 to 2003) highlight two

interesting points. First, the length of the time frame is
important in understanding the dynamics of the system.
This is nothing new to ecology (Delcourt et al., 1983), but
our findings further reinforce how important these deci-
sions are, even on the micro-scale. We were limited to four
images over three years due to data availability; had we
been limited to three images over two years (2000 to 2002),
we may have drawn drastically different conclusions. Over
that two year period, median gap area increased 14 m2 com-
pared to no significant changes in median area over the
2000 to 2003 time frame. This high degree of variability in
results over relatively short times spans also points to the
dynamic nature of China Camp’s oak woodlands.

Second, the division of the data into separate analyti-
cal frames can help to highlight which time frames exert
more or less influence on the outcome of the entire study
period. Between 2000 and 2001, for example, median gap
area increased 11 m2. In 2001 to 2002, no significant
change in area was seen. For the last year (2002 to 2003),
area decreased by a median of 12 m2, effectively canceling
out the growth in the first year (change area was insigni-
ficant over the entire study period). This indicates that
China Camp’s oak woodlands exhibited heavy lateral
recruitment that likely offset continuing SOD mortality.

Over the three years of this study, smaller gaps were
expected to decrease in size while larger gaps were expected
to increase. This was predicted due to the hot, dry summers
China Camp experiences, increasing drought stress in the
larger, less sheltered gaps. Interestingly, the exact opposite
occurred. Smaller gaps ("147.5 m2) continued to increase in
size between 2000 and 2003 while larger gaps (#147.5 m2)
decreased in size. This result could have arisen from one of
three possible conditions or a combination thereof:

1. Microclimatic conditions in China Camp are not as extreme
as originally anticipated, or the trees growing there are well
adapted to Mediterranean summers.

2. SOD, with its spatially contagious distribution (Kelly and
Meentemeyer, 2002) and limited dispersal ability (except for
sporadic long range dispersal events; Mascheretti et al.,
2008) continues to spread to vulnerable hosts bordering the
smaller gaps while it has largely exhausted the vulnerable
hosts on the edges of the large gaps.

3. Microclimatic conditions or species assemblages in the larger
gaps are hotter and drier, conditions that are less suitable for
transmission of P. ramorum (Swiecki and Bernhardt, 2002).

It is likely that these three explanations compliment
each other, with each one contributing to the trend of
smaller gaps growing while larger gaps shrink.

4*)'/,#-*)#
This study bridges both ecology and remote sensing. On the
ecological front, we investigated the effects of a widespread
forest pathogen in the oak woodlands of California, Sudden
Oak Death. We used high-resolution imagery both to test
our ecological hypotheses about canopy gap structure through
time and to test our new approach to change detection, i.e.,
object-by-object (OBO) change detection. OBO change detec-
tion identifies individual polygons in the first image of the
series and tracks their change through the subsequent images,
producing results that detail the changes of these gaps indi-
vidually and not in aggregate. This study is the first of its
kind to track changes in forest canopy gap structure on an
individual basis. The successful characterization of the indi-
vidual canopy gaps throughout the study has lent insight
into the dynamics of California’s coastal oak woodlands in
the wake of SOD. The oak woodlands at China Camp have
rebounded considerably, both reducing the total size of all
gaps that contained SOD. At smaller scales, the median gap
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size has remained constant even as the pathogen continues to
kill mature trees, an ecologically significant finding that is a
direct product of the OBO change detection technique. While
SOD will certainly affect the species composition of Califor-
nia’s coastal oak woodlands, the remaining forest structure
shows remarkable resiliency in the face of this disturbance.
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