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Abstract Tidal marsh monitoring and restoration can
benefit from the union of fine-scale remote sensing
products and field-based survey data via spatial predictive
models. As part of an interdisciplinary wetland monitoring
project in San Francisco Bay, we developed a suite of 1-m
pixel-level spatial metrics describing patterns in marsh
vegetation and geomorphology for six sites across a large
salinity gradient. These metrics, based on multi-spectral
aerial imagery and derived vegetation maps, provided a
basis for fine-scale spatial modeling of avian habitat
potential. Using common yellowthroat (Geothlypis trichas),
song sparrow (Melospiza melodia), and black rail (Later-
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allus jamaicensis) abundance data, we developed statistical
models with relatively high explanatory power. In each
case, models were improved by including vegetation-map
variables, but variables directly extracted from aerial
imagery were more reliable indicators of avian abundance.
Although results varied by species, our models achieved
reasonable within-site predictive success. When predicting
to sites not used in the training set, however, validation
results were inconsistent and often poor, suggesting that
these models should be used with caution outside of the
original study sites. As remotely sensed data become more
readily available, our methods may be applied to a diverse
range of sites, resulting in improved model generality and
applicability.

Keywords Aecrial imagery - Birds - Remote sensing -
Spatial models - Wetland restoration

Introduction

The San Francisco Bay Estuary (hereafter, the Bay) is the
largest estuary along the Pacific coast of North America,
and at one time contained the largest contiguous tidal
marsh system on the Pacific Coast (Josselyn 1983).
Within the last 150 years, extensive man-made modifica-
tions of Bay habitat have taken place, accelerated by the
discovery of gold in the California foothills in the mid-
1800s. More than 80% of tidal wetlands have been lost as
a result of human activities, such as diking, dredging, and
urban development (Josselyn 1983; Nichols et al. 1986),
mirroring the loss of wetlands throughout the rest of the
state in that period (Dahl 1990). In addition, many
remaining tidal marshes have been subdivided and altered
hydrologically by levees, mosquito control ditches, board-
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walks, and power lines (Boumans et al. 2002). In response
to this historic loss of tidal marsh habitat, and to aid the
recovery of several threatened and endangered marsh
species, tidal marsh restoration in the Bay has increased
dramatically in recent years. In addition to the public
acquisition of 10,000 ha of salt evaporation ponds for
restoration to tidal marsh habitats, over 100 other wetland
restoration projects have been completed or planned in the
Bay (http://www.wetlandtracker.org/ba/).

While common strategies, monitoring methods, and
success criteria for tidal marsh restoration have yet to be
agreed upon (Zedler 1996), many researchers and wetland
practitioners agree that adaptive management is key to
restoration success (Weinstein et al. 2001). Because
restoration trajectories do not always follow predictable
paths (Zedler and Callaway 1999), strategic monitoring and
assessment are necessary. Traditional field-based monitor-
ing generally consists of point- or transect-based samples
(Neckles et al. 2002), which provide spatially limited
snapshots of the site in question. Restoration monitoring
may also benefit from the collection of aerial imagery and
other remotely sensed data (Phinn et al. 1996; Hinkle and
Mitsch 2005), which are spatially comprehensive, but
limited to physical marsh characteristics that can be
extracted from an image. The union of these two types of
monitoring data via spatial predictive models can provide
managers and researchers with an enhanced level of
information about a particular site, and provide the ability
to predict conditions at new sites.

In particular, spatial habitat relationship models for
indicator species (Ozesmi and Mitsch 1997; Milsom et al.
2000) can be used to identify the biophysical features that
relate to their distribution and abundance, and predict
occurrence or abundance at unsurveyed locations. Habitat
models can also be used to identify the relative importance
of different environmental variables as spatial “indicator”
metrics, which may be used in rapid assessment efforts to
characterize habitat quality, and to improve our conceptual
understanding of wetland processes and patterns. The best
spatial metrics are those that represent key ecological
processes (Turner 1989) and can be generalized across
scales and extents (Wu 2004).

Many spatial habitat relationship models are based on
satellite-derived habitat data—including classified landcover
types, vegetation indices, and other spectral characteristics—
at a 30-m pixel resolution or greater (Suarez-Seoane et al.
2002; Lawler et al. 2004; Bellis et al. 2008). But with the
recent widespread availability of high resolution (1-m or
finer) and/or multispectral aerial imagery, there exists a great
opportunity to develop fine-scale predictive models that
capture local-scale variability within the organism of interest
(Kelly and Meentemeyer 2002; Wood et al. 2007). In
particular, these types of imagery have been used to generate
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spatially and floristically detailed maps of tidal marsh
vegetation (Hirano et al. 2003; Judd et al. 2007), which
may contain more useful information relating to the repro-
ductive and foraging requirements of a species than vegetation
indices such as the Normalized Difference Vegetation Index
(NDVI). NDVI s a relatively simple way to capture the spatial
heterogeneity of aboveground vegetation productivity (Kerr
and Ostrovsky 2003). Through its strong correlation with
aboveground net primary productivity and absorbed photo-
synthetically active radiation, NDVI provides an index of
ecosystem function, and as such has been used in a number
of habitat suitability models for a range of taxa, including
insects (Estrada-Pena 1999; Shochat et al. 2004), mammals
(Marshal et al. 2006; Wiegand et al. 2008), and birds
(Aldridge and Boyce 2007; Brotons et al. 2007).

Breeding bird (passerine and rail) species breeding in
San Francisco Bay tidal marshes have been shown to
respond to individual tidal marsh plant species in addition
to vegetation structure (Spautz et al. 2006), suggesting that
detailed vegetation maps may be useful for predicting their
distribution and abundance. While Spautz et al. (20006)
identified vegetation associations for these species based on
field-collected vegetation data, such detailed datasets are
not available for spatial prediction across extensive areas.
Additionally, it is unclear how these field-intensive param-
eters correspond with remotely sensed vegetation and
geomorphic metrics.

Thus, we developed fine-scale spatial models of habitat
relationships for three breeding tidal marsh bird species at
six study sites, spanning a large salinity and geographic
gradient, and including both restoration and reference sites.
The study was conducted as part of a multi-disciplinary
wetlands monitoring and research program for the north
San Francisco Bay called the Integrated Regional Wetlands
Monitoring (IRWM) program (http://www.irwm.org), the
goals of which were to understand wetland ecological
processes, especially in a restoration context, and identify
appropriate indicators for monitoring restoration progress.

Due to the harsh environment created by high salinity
and tidal inundation regimes, as well as the low
structural diversity of these systems, tidal marshes are
generally characterized by low vertebrate species diver-
sity and a high proportion of endemic subspecies
(Basham and Mewaldt 1987; Greenberg and Droege
1990; Greenberg et al. 2006b). Thus, the bird species that
we chose for modeling are all tidal marsh-dependent
species of conservation concern: tidal marsh song sparrow
(Melospiza melodia samuelis [San Pablo Bay] and M.m.
maxillaris [Suisun Bay and western Delta]), salt marsh
common yellowthroat (Geothlypis trichas sinuosa), and
California black rail (Laterallus jamaicensis cotorniculus).
The song sparrow and common yellowthroat subspecies
are tidal marsh endemics found primarily in San Francisco
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Bay tidal marshes (Marshall and Dedrick 1994); both are
California Bird Species of Special Concern (Gardali and
Evens 2008; Spautz and Nur 2008a, b). The black rail is
listed by the state of California as a threatened species, and
more than 80% of its population is thought to be contained
in northern San Francisco Bay tidal marshes (Evens et al.
1991). Perhaps due to restoration and conservation
efforts, black rail and common yellowthroat populations
increased from 1996 to 2008, although song sparrow (M.
m. samuelis, M.m. maxillaris) populations have exhibited
recent declines (Nur et al., PRBO Conservation Science,
unpublished data).

Our specific objectives were to: (1) develop spatial
models to predict avian abundance within and among
marsh sites; (2) compare model predictive abilities across
bird species; (3) identify fine-scale indicator metrics from
remotely sensed imagery that can be used to predict
patterns of abundance; (4) evaluate the importance of
classified vegetation maps vs. simple geomorphic maps
for prediction; and (5) compare within-site and across-site
predictive abilities.

Methods
Study Area

Six tidal marshes within the North San Francisco Bay (San
Pablo Bay) and western Sacramento-San Joaquin Delta
were chosen as intensive study sites for multidisciplinary
collaborative research efforts (Fig. 1). The six study sites
consisted of two reference marshes, comprised partially or
entirely of ancient (>1,000 years old) tidal marsh (SFEI

Study Area
/

Fig. 1 Marsh study site locations. 1=Petaluma River Marsh (PRM;
restoration), 2=Pond 2A (PTAR; restoration), 3=Coon Island (COIS;
reference), 4=Bull Island (BUIS; restoration), 5=Browns Island
(BRIS; reference), 6=Sherman Island (SHIS; restoration)

1998), and four restoration sites, ranging in age from 8 to
78 years old at the project’s inception in 2003.

Aerial Imagery Acquisition

As part of the IRWM project, we obtained high-resolution
color infrared aerial imagery flown at mid tide for each
study site in October 2003 and August 2004 (at the end of
the growing season, to maximize vegetation biomass).
Aerial photographs were flown at a scale of 1:9,600 and
scanned at a resolution of 1,200 dpi to achieve a pixel
resolution of 0.2 m. Aerial control points were laid out in
the marshes, and used to ortho-rectify the scanned photo
images using ENVI photo processing software, version 3.6
(ITT 2003). RMSE values for 2004 averaged 0.233 and
ranged from 0.160 to 0.368 (=13 photos).

Vegetation Mapping

Images were resampled from 0.2 m to 1.0 m pixel size, in
order to reduce image size for analysis and classification.
All image analyses was performed with Erdas Imagine
software (Leica Geosystems Inc. 20006). First, vegetated and
non-vegetated areas were separated using the Normalized
Difference Vegetation Index (NDVI). Next, a set of known
vegetation points were used as training samples. Each
vegetation group image was classified based on its training
samples using a maximum likelihood classifier (MLC)
supervised classification. This step rendered classified
outputs for each vegetation group, which were combined
together and with the non-vegetated areas (bare ground and
water), to form a complete vegetation map for each site. At
this point, all tiles (if more than one) were mosaicked
together. Finally, the vegetation maps were smoothed using
an elimination filter, resulting in a minimum mapped unit of
approximately 4 m”. Map accuracies based on independent
vegetation data ranged from 70% to 91%.

Plant species composition varied by site and included
Pacific cordgrass (Spartina foliosa), common perennial
pickleweed (Sarcocornia pacifica), annual pickleweed
(Salicornia depressa), alkali bulrush (Bolboschoenus
maritimus), three-square common bulrush (Schoenoplectus
americanus), common tule (S. acutus var. occidentalis),
tule/bulrush (S. californicus), three cattail species (Tipha
angustifolia, T. domengensis, and T. latifolia), perennial
pepperweed (Lepidium latifolium), alkali common reed,
(Phragmites australis), and gumplant (Grindelia stricta var.
stricta).

Geomorphic Mapping

Polygon geomorphic maps, derived from the non-vegetated
portions of the 2003 vegetation maps, were complemented
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by manually digitized lines representing first-order channels
that were difficult to extract from the aerial imagery via
automated methods. A channel centerline layer was also
extracted manually from the smoothed polygons. Channel
lines were digitized on-screen from 2003 aerial photos
using stream mode digitizing with the same scale (1:600)
and tolerance settings that were used to edit the polygons.
Linear channel segments were also attributed with respect
to width class.

Generation of Spatial Metrics

Based on 2004 1-m vegetation grid layers for each site,
moving window metrics were calculated using the Frag-
Stats software package (McGarigal and Marks 1995) and a
circular, 50-m radius moving window. Moving-window
vegetation metrics included proportion of each vegetation
type, Shannon-Wiener diversity index, and mean NDVI
value.

Based on 2004 1-m grid representations of the 2003
polygon geomorphology layers for each site, as well as
line representations of the linear channel networks,
circular moving-window geomorphic metrics were calcu-
lated using the neighborhood statistics and linear density
functions in the ArcGIS 9 Spatial Analyst extension
(ESRI 2005). Metrics calculated were linear channel
density (m of channel length/m> of total area) and areal
channel proportion. The radius used was 50 m, and
outputs were 1-m grid layers. An inverse-weighted
channel proximity metric—1/(distance [m] to nearest
“open” [not vegetation-covered] channel)}—was also cal-
culated using the distance (straight line) and raster
calculator functions in the ArcGIS 9 Spatial Analyst
extension (ESRI 2005).

Finally, we calculated an inverse-weighted levee
proximity metric—1/(distance [m] to nearest levee)—
based on site boundaries digitized from 2003 aerial
photos using ArcGIS 9.1 (ESRI 2005). Only levee
boundaries for our study sites were used to develop this
metric. For the site with no surrounding levees (Brown’s
Island) this variable was assigned a value of 0 for all
pixels.

Avian Data Collection

To estimate passerine (song sparrow and common
yellowthroat) abundance, we conducted five-minute
point-count surveys (Ralph et al. 1993) at 90 point
locations across the six study sites over a four-year period
(2004-2007). We followed the same methods used by
Spautz et al. (2006). All visual and auditory bird
detections up to 50 m, as estimated by a trained observer
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and calibrated with a rangefinder if necessary, were
included in this analysis. Surveys were conducted within
4 h of sunrise, with each point visited two times between
15 March and 30 May in a given survey year. Successive
survey rounds were conducted at least 3 weeks apart to
minimize the effects of seasonal differences in abundance.
We placed survey points 150 to 200 m apart along
transects, with a randomly chosen start location and one
to 20 points per site, depending on marsh size. Some
points were placed along levees or boardwalks to
improve sampling efficiency, but we also placed multiple
points within the marsh vegetation to reduce the bias
related to sampling from habitat edges.

Black rail surveys were conducted from 2004 through
2006 at 76 points, 61 of which overlapped with passerine
point counts, during the breeding season between 1 April
and 30 May. Surveys were conducted following a
standardized tape call-back/response protocol (Evens et
al. 1991; Nur et al. 1997). We summarized the data by
counting the number of rails detected within 50 m, which
is considered the maximum distance at which black rails
can be reliably counted (Spear et al. 1999).

Model Development

Our preliminary list of spatial metrics was comprehen-
sive, including all vegetation, geomorphology, and levee-
proximity variables that were calculated (Table 1). To
account for broad-scale variation among sites, we also
included variables representing general physical charac-
teristics measured in the field at the subsite level (2-5
subsites per site, delineated based on natural differences
in vegetation, S. Siegel, unpubl. data): mean salinity
(PSU), age (time since restoration or approximate marsh
age [estimated as 1,000+ years for ancient marshes;
100 years for centennial marshes formed by Gold-Rush-
era hydraulic mining sediments (Atwater et al. 1979)]),
and mean elevation (m). Although this initial list of
variables was informed by our a priori knowledge of
tidal marsh systems and the components that are
important to breeding birds, we did not constrain our
analysis by pre-selecting variables for model inclusion.
Because we were interested in identifying predictive
spatial metrics, we did not want to bias the outcome or
limit the variables unnecessarily. Rather, we conducted
an exploratory analysis of univariate relationships be-
tween spatial vegetation and geomorphic metrics and bird
abundance using generalized additive models (Hastie and
Tibshirani 1990), which was intended (a) to modestly
reduce the number of variables considered for each species
and (b) to identify the most appropriate variable trans-
formations.
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Table 1 Description of geomorphic and vegetation spatial metrics evaluated for model inclusion. Metrics were calculated at the 1-m pixel level

for each study site. *=within 50-m radius

Variable Type Definition

Site site Marsh site (Fig. 1): PRM, PTAR, COIS, BUIS, BRIS, COIS

SalinMean sub-site Mean soil water salinity (PSU)

ElevMean sub-site Mean marsh plain elevation (m)

Ageln sub-site Log-transformed marsh age (years since restoration for restored marsh;
100 years for centennial marsh; 1000 years for ancient marsh)

LevProx edge Inverse distance to nearest levee (0 if no adjacent levee); levee proximity

ChArea50 geomorphic Channel area (proportion) *

ChDens50 geomorphic Linear channel density (m/m?) *

ChProx geomorphic Inverse-weighted distance to nearest open channel; channel proximity

NDVI vegetation Normalized difference vegetation index; vegetation productivity *

ShDiv vegetation map Shannon vegetation diversity index *

SaPa vegetation map Sarcocornia pacifica (perennial pickleweed) proportion *

ScAm vegetation map Schoenoplectus americanus proportion *

BoMa vegetation map Bolboschoenus maritimus proportion *

LeLa vegetation map Lepidium latifolium (perennial pepperweed) proportion *

PhAu vegetation map Phragmites australis proportion *

SAcCa vegetation map Schoenoplectus acutus/S. californicus (tule) proportion *

SpFo vegetation map Spartina foliosa (Pacific cordgrass) proportion *

Based on bird data from all four years (2004-2007),
we ran generalized additive mixed models (GAMM) with
a site random effect for each species and each vegetation
and geomorphic metric, using the ‘mgcv’ package (Wood
2006) for R (R Development Core Team 2007). Smooth-
ing parameters for penalized regression splines were
estimated using the default generalized cross validation
criterion (Wood 2004). For common yellowthroat and
black rail, we assumed a negative binomial distribution
with a log link function; for song sparrow, we assumed a
normal distribution with a linear link function. For
consistency in this exploratory analysis, the dependent
variable for all species was the average number of
individuals detected per point (within 50 m) in a given
year. For each species, we reduced the number of
candidate vegetation and geomorphic variables by elim-
inating those without substantial indication of a relation-
ship with bird abundance (P>0.10) based on the
univariate GAMM model. Visual inspection of GAMM
response curve plots was used to identify appropriate
forms of the independent variables (i.e., linear, log, or
quadratic). Physical (subsite-level) and edge (pixel-level)
variables were also included in their original form as
candidate variables for all species’ models.

For each species, we then identified all possible
generalized linear models (GLM) of point-level abun-
dance or occurrence (see below) based on the set of
candidate variables. Because we assumed that differences

in bird abundance across sites were due to the unique
physical characteristics of the sites themselves (e.g., site
history, configuration, and surrounding land use), rather
than spatial dependence within sites, we chose to specify
site as a fixed, rather than random, effect in our models.
We also constructed models without site terms for
comparison purposes, to gain a better understanding of
the vegetation and geomorphic variables that help explain
differences among sites, and to facilitate prediction to
sites not previously surveyed. To assess the relative
importance of variables derived from classified vegeta-
tion maps, we constructed all possible models for the
following nested subsets of the candidate variables using
the R statistical program (R Development Core Team
2007):

1. Complete without site: all vegetation, geomorphic, and
sub-site variables

2. Complete with site: as above+site term

3. Geomorphic without site: all variables not derived from
classified vegetation maps

4. Geomorphic with site: as above+site term

To assess the importance of each variable, we deter-
mined a weighted deviance contribution value for each
variable (by species). We did this by calculating the
deviance explained by each variable in each model (the
difference in model deviance with and without that
variable), then multiplied those deviance contribution
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values by the model’s Akaike’s Information Criterion (AIC)
weight (w;)—a relative measure of model support that sums
to 1 across models (Burnham and Anderson 2002)—and
then summed over all models (subsets 1 and 2 above).
Weighted deviance contribution values for each variable
were compared against y° critical values for x=0.05
(11.07 for site variable [5 df], 3.84 for all other variables
[1 df]), as well as AIC-based model inclusion thresholds
(10 for site variable, 2 for all other variables), to determine
the variable’s importance across models (Lebreton et al.
1992).

For song sparrow, the dependent variable was mean
annual abundance; we assumed a normal distribution with a
linear link function based on the original data distribution.
For common yellowthroat and black rail, the data suggested
that a negative binomial distribution with a log link
function would be more appropriate (Hilbe 2007). Due to
the integer requirement for the dependent variable in a
negative binomial model, we used the total number of
detections at a point across multiple visits (with number of
visits as a covariate in the model) rather than a mean
abundance value.

Model Validation

Model predictive ability was first evaluated using six-fold
cross-validation. We selected a different random sample of
5/6 of the survey points (across all six sites) for each of six
trials, and generated predictions of each species at the
remaining 1/6 of the points using model-averaged predic-
tions from all models within 2 AIC units of the model with
the lowest AIC value (following Burnham and Anderson
2002). For each of the six trials, we calculated model
explanatory power (R? or pseudo-R?) for predicted versus
observed values (from test data only) as a validation
diagnostic.

Next we performed a site-based cross-validation on each
final non-site model by holding out the data from one site at
a time, building the models using data from the remaining
five sites, and validating those top models on the withheld
site. Model averaging procedures and validation diagnostics
were the same as for the standard six-fold cross-validation.

Spatial Prediction

To develop model-averaged spatial predictions for each
study site, separate raster layers (in ascii grid format) for
each model variable and each site, were imported to R and
used as inputs for model prediction. The set of top models
(AAIC <?2) including a site term for each species were used
to generate model-averaged predictions for each site based
on the values of the raster layers. Pixel-level abundance
predictions were converted back to ascii grids and mapped
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in ArcGIS 9.2 (ESRI 2006). For common yellowthroat and
black rail, we divided by the total number of visits to obtain
a per-visit abundance prediction.

Model-averaged coefficients and standard errors were
calculated based on the set of top models for each species,
following Burnham and Anderson (2002). We considered
all variables to be present in all models considered, thus
setting coefficients equal to zero for models in which they
were not included. Standard errors were calculated using
the unconditional variance estimator based on Akaike
weights (Burnham and Anderson 2002, eqn. 4.9).

Results

Univariate GAMM analysis resulted in 8 candidate vege-
tation and geomorphic variables for song sparrow models,
8 variables for common yellowthroat, and 10 variables for
black rail (Table 2), in addition to a site term and the
physical sub-site and levee-proximity variables.

Common Yellowthroat

For common yellowthroat, model explanatory power was
high (partly due to the inclusion of number of survey visits
as a covariate), with pseudo-R? values ranging from 0.75 to
0.83 for the top models in each of the four categories:
complete, complete+site, geomorphic, geomorphic+site
(Table 3). Based on AIC, the models with greatest support
were those that included vegetation variables (“complete”
models), with the best models also including a site term.
Overall cross-validation yielded very good correspondence
between predicted and observed abundance, especially for
the top “geomorphic” models with a site term, with a mean
R? value of 0.75 (Table 3). When cross-validation was
performed by site, however, mean R? values were markedly
lower, and variability was proportionately higher.

In terms of variable importance, levee proximity (LevProx)
had the highest weighted deviance contribution, but only when
the site term was not included (Fig. 2a). Other important
variables in models without a site term were Schoenoplectus
acutus/S. californicus proportion (SAcCa), channel density
within 50 m (ChDens50), vegetation productivity (NDVI),
and Bolboschoenus maritimus proportion (BoMa). The effect
of levee proximity was negative, while the effects of other
important variables were positive or quadratic (Supplementary
Table 1).

When present, the site term had a very large weighted
deviance contribution compared to other variables, although
channel density, Schoenoplectus acutus/S. californicus propor-
tion and Lepidium latifolium proportion were also important
predictors in models with a site term (Fig. 2b). Both vegetation
variables had positive effects (Supplementary Table 1).
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Table 2 Candidate variables and transformations for inclusion in generalized linear models (by focal species). Variables are defined in Table 1;

“lin”=linear; “log”=natural log; “quad”=quadratic; “sqrt”=square-root

Variable Type Common yellowthroat Song sparrow Black rail
Site site categorical categorical categorical
Ageln sub-site lin lin lin
SalinMean sub-site lin lin lin
ElevMean sub-site lin lin lin
LevProx edge lin lin lin
ChArea50 geomorphic quad sqrt lin
ChDens50 geomorphic lin - lin
ChProx geomorphic log log lin

NDVI vegetation lin quad quad
ShDiv vegetation map quad log lin

SaPa vegetation map - quad lin

ScAm vegetation map - log lin

BoMa vegetation map quad - lin

LeLa vegetation map quad quad log

PhAu vegetation map - - lin
SAcCa vegetation map lin log -

SpFo vegetation map lin

# of candidate models with (without) site term

82,944 (41,472)

27,648 (13,824) 196,608 (98,304)

Model-averaged predictions for mean common yellow-
throat abundance ranged from nearly 0 to 5.25 birds per 50-
m-radius point-count survey area (0.785 ha), and were more
variable across than within sites (Figure 3a). Predicted
presence was generally highest at the low-salinity sites.

Song Sparrow

For song sparrow, model explanatory power was reasonably
high, with an R? value of 0.54 for the top model (Table 3).

Based on AIC, the models with the greatest support
included a site term and vegetation variables. The top
“geomorphic” model with a site term was similar in AIC
to the top “complete” model without a site term. Overall
cross-validation yielded reasonable correspondence be-
tween predicted and observed abundance, with best results
for the top “geomorphic” models with a site term, which
had a mean R? value of 0.44 (Table 3). When cross-
validation was performed site by site, mean R? values were
much lower.

Table 3 Model diagnostics for common yellowthroat (COYE), song sparrow (SOSP), and black rail (BLRA) top models. Complete=all
vegetation, geomorphic and sub-site variables; complete with site=as above+site term; geomorphic=all variables not derived from classified

vegetation maps; geomorphic with site=as above+site term

Cross-validation R* (mean+SD) Site validation R? (mean+SD)

0.628 (+0.168) N/A

Species n R?*/Pseudo-R* AIC Model
COYE 90 0.832 271.2 Complete+Site
0.812 275.1 Complete
0.809 278.2 Geomorph+Site
0.750 295.1 Geomorph
SOSP 90 0.543 410.1 Complete+Site
0.454 416.0 Geomorph+Site
0.401 416.4 Complete
0.191 437.4 Geomorph
BLRA 76 0.625 312.0 Complete+Site
0.467 319.1 Complete
0.482 322.6 Geomorph+Site
0.393 322.6 Geomorph

0.644 (£0.202)
0.746 (£0.0426)
0.609 (£0.115)
0.392 (£0.183)
0.442 (£0.133)
0.341 (£0.173)
0.190 (+£0.169)
0.340 (£0.272)
0.260 (+0.188)
0.195 (£0.127)
0.198 (£0.123)

0.363 (£0.202)
N/A
0.352 (£0.177)
N/A
N/A
0.159 (£0.195)
0.132 (20.116)
N/A
0.140 (+0.425)
N/A
0.168 (+0.157)
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« Fig. 2 Weighted deviance explained in complete common yellow- a C30-0.33 3 o Low
throat models, without (a) and with (b) a site term; song sparrow .34 -0, gpp PR

models, without (¢) and with (d) a site term; black rail models
without (e) and with (f) a site term. See Table 1 for variable
descriptions (“Ln”=natural log; “2”=quadratic; “Sqrt”=square-root).
Black bars represent vegetation variables; hatched bars represent
geomorphic and NDVI variables; white bars represent subsite and
survey variables. The Chi-square critical value for x=0.05 and df=1
(all variables except site term) is 3.841; the Chi-square critical value
for «=0.05 and df=5 (site term) is 11.07

The variable with the highest weighted deviance contri-
bution in the non-site models was Schoenoplectus acutus/S.
californicus proportion (SAcCaln), followed by mean soil
salinity (SalinMean) and vegetation productivity (NDVI)
(Fig. 2c). Other variables with significant weighted deviance
contributions to the no-site models included Lepidium
latifolium proportion (LeLa), channel proximity (ChProxLn),
channel area (ChArea50Sqrt), and Scirpus americanus
proportion (ScAmLn). All variables had positive effects,
except Scirpus americanus proportion (Supplementary
Table 1).

When a site term was included it had the highest
weighted deviance contribution, followed by mean salinity
and marsh age (AgeLn). Other variables with significant
weighted deviance contributions in the presence of a site
term were Schoenoplectus acutus/S. californicus propor-
tion, Sarcocornia pacifica proportion (SaPa2 and SaPa),
vegetation productivity, channel proximity, Lepidium
latifolium proportion, channel area, mean elevation (Ele-
vMean), and vegetation diversity (ShDivLn) (Fig. 2d). All
variables had positive or quadratic effects except marsh
age, mean marsh elevation, and vegetation diversity
(Supplementary Table 1).

Model-averaged predictions for mean song sparrow
abundance ranged from 0 to 31.6 birds per 50-m-radius
point-count survey area (0.785 ha) (Figure 3b), and were
more variable within than across sites.

Black Rail

For black rail, model explanatory power was fairly high
(partly due to the inclusion of number of survey years as a
covariate), with an R? value of 0.63 for the top model
(Table 3). Based on AIC, the best models included
vegetation variables and a site term. The top “complete”
models without a site term had greater support than the top
“geomorphic” models with a site term. Overall cross-
validation demonstrated reasonable correspondence be-
tween predicted and observed abundance for “complete”
models with a site term (mean R?=0.34), but poor
prediction success for “geomorphic” models and “com-
plete” models without a site term (Table 3). When cross-
validation was performed by site, mean R* values were
much lower and highly variable.
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Fig. 3 Model-averaged (AIC-weighted) predicted mean abundance per
0.785 ha, based on top (delta AIC < 2) complete models (including site
term) for a common yellowthroat, b song sparrow, and ¢ black rail

When a site term was not included, other variables of
importance were channel area (ChArea50), vegetation
diversity (ShDiv), vegetation productivity (NDVI), Bolbo-
schoenus maritimus proportion (BoMa), and Lepidium
latifolium proportion (LeLaLn) (Fig. 2e¢). In all of the top
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models, the effects of channel area, vegetation diversity, and
Bolboschoenus maritimus proportion were negative, while
the effect of Lepidium latifolium proportion was positive, and
the effect of vegetation productivity was positive or quadratic
(Supplementary Table 1).

When the site term was included, it had the highest
weighted deviance contribution, followed by vegetation
diversity, Spartina foliosa proportion (SpFo), and Phragmites
australis proportion (PhAu) (Fig. 2f). The directions of
variable effects within the top models were the same with
as without a site term (Supplementary Table 1). The effect of
Phragmites australis proportion was negative, while that of
Spartina foliosa proportion was positive.

Model-averaged predictions for black rail abundance
ranged from 0.028 to 49 birds per 50-m-radius survey area
(Figure 3c). Within- and among-site variation was similar,
with predicted abundance lowest at the two highest salinity
sites (both restored marshes).

Discussion
Model Performance

Across all three avian species, we were able to develop
predictive models with relatively high explanatory power
based on aerial imagery-derived spatial metrics. For each
species, model explanatory power was improved by
including variables based on mapped vegetation classes,
although these “complete” models did not always perform
better, in terms of cross-validation results, than models
containing only geomorphic variables and general sub-site
conditions. While some individual vegetation variables
were superseded by site-level differences (and thus dropped
from models that included site terms), they are still likely to
be biologically meaningful drivers of avian abundance, and
useful for predicting at new sites.

This result was not unexpected, given the importance of
vegetation composition and structure for breeding passer-
ines and rails (Spautz et al. 2006), but demonstrates the
ability of high-resolution aerial imagery to capture fine-
scale differences in vegetation that affect breeding bird
abundance and distribution. This is one of very few
applications of fine-scale aerial imagery-derived vegetation
GIS data to predict wildlife abundance and distribution (but
see Wood et al. 2007), and is the only such known example
for marsh breeding birds.

Species Differences
Although some predictor variables were shared across

species, our models highlight the complementary and
unique habitat requirements of each species, as well as

@ Springer

different types of responses and potential to serve as tidal
marsh indicators. For common yellowthroat, predictive
ability and cross-validation success was high, but predic-
tions varied greatly by site and mean salinity was an
important predictor, suggesting that this species’ abundance
is driven in large part by site-level processes, more than
within-site variation in vegetation and geomorphology.
Song sparrow models also had good predictive ability and
reasonable cross-validation success. Models for this species
included more vegetation and geomorphic variables of
importance, however, and resulted in predictions with
greater within- than across-site variability, suggesting that
the abundance of this nearly ubiquitous tidal marsh species
is primarily driven by local, within-marsh processes.
Results for black rail were somewhat intermediate, with
models that had fairly high predictive ability but low cross-
validation success, and predictions that exhibited similar
within- and across-site variability. However, the low
predicted abundance of this species at young restoration
sites (along with its threatened population status) suggests
that model results may be confounded by slow colonization
of newly restored sites. Thus, the use of these three species
as marsh indicators may vary according to spatial and
temporal scale: short-term and local-level for song sparrow,
short-term and site-level for common yellowthroat, and
long-term and local- to site-level for black rail.

Indicator Spatial Metrics

The predictive abilities of the spatial indicator metrics used
in this analysis varied greatly among species. Because of
the large salinity gradient across which our study was
conducted, none of the vegetation types examined were
present at all six sites; this may have affected our ability to
detect consistently strong relationships from our multi-
model analysis. While many vegetation and geomorphic
metrics were present in all or most of the top models used
for prediction, only a few variables emerged as significant
when considering the full set of AIC-weighted models.
Fewer variables were important across sites (i.e., in models
without a site term), most of which were not specific
vegetation types. This may be related to the relatively small
number of sites included in this analysis, but may also
reflect interannual variation in vegetation over the four bird
survey years that could not be captured by our single-year
imagery-derived metrics. In addition, some important
floristic and structural vegetation details are necessarily
lost in any vegetation classification scheme, and some
important vegetation components were not well captured by
our imagery due to timing. Here we discuss just those
variables that were most important for explaining variation
among sites, which may have general relevance for
restoration and management purposes.
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Across sites, our models predicted a higher frequency of
common yellowthroat detections in areas that were farther
away from levees. Habitat near levees may be associated
with a lack of low-marsh vegetation types known to be
used by this species, such as B. maritimus (Spautz et al.
2006), based on the hydrologic effects of levees on marsh
vegetation and channel formation. Levees may also serve as
conduits for land-based predators and nest parasites (cow-
birds), which could negatively affect common yellowthroat
occurrence. In either case, this may be an important
consideration for the management of this species, especially
in the context of restoration, where levees may either be
breached or removed entirely.

For both common yellowthroat and song sparrow
abundance, we found strong positive or curvilinear associ-
ations with the proportions of Schoenoplectus acutus/S.
californicus (tule) and the invasive Lepidium latifolium
(pepperweed), which are associated with fresh and brackish
marshes. Song sparrow abundance was also positively
associated with salinity, however, reflecting the generalist
nature of this species, which is found in a wide variety of
habitats throughout North America.

Perhaps more informative and useful was the importance
of vegetation productivity, as measured by NDVI, which
has been positively associated with breeding bird abun-
dance and species richness at broader spatial scales
(Hurlbert 2004; Evans et al. 2006), and may reflect
structural habitat availability for both of these species (as
well as black rail). NDVI is derived directly from spectral
properties and does not require the development of a
vegetation map, which makes it a good candidate for rapid,
cost-effective monitoring. Channel area (proportion), den-
sity, and proximity were also important predictors for these
two species. Channel proximity has been identified as a
strong predictor of vegetation diversity and composition
(Sanderson et al. 2000), and may serve as a proxy for
vegetation types that were not well captured by our
vegetation map, such as Grindelia stricta (gum plant),
which is used by song sparrows for nesting, and has been
positively associated with the abundance of that species
(Spautz et al. 2006). Channel proximity, density, and area
may also affect birds directly via resource availability,
predation risk, and flooding (Greenberg et al. 2006a).

For black rail, channel area (proportion) and vegetation
diversity were the most consistent (negative) predictors of
abundance across sites. These variables may be proxies for
the high-marsh areas that this species is thought to require
for nesting and to avoid exposure to predators during
extreme high tide (Evens and Page 1986; Conway and
Sulzman 2007). While marsh age and mean elevation (at
the sub-site level) were present as positive predictors in
many of the top models, the resolution of these data was not
great enough to capture within-site variation.

Model Generality

Our models achieved moderate to high within-site predic-
tive success with data from just six sites. For all species,
however, the inclusion of a site term generally improved
model explanatory power and affected the importance of
other variables when included. This reflects the high
variability among our study sites, and suggests the
importance of other unknown variables associated with
individual sites, such as site history and land use, which
may affect site vegetation and geomorphology in ways that
we did not measure, but may also affect biotic interactions
via prey resources and predator communities.

When predicting to new sites not in the training dataset,
results were generally inconsistent, and often poor. The
large variation in predictive success suggests that these
models should be used with caution outside of the original
study sites. Given the relatively small number of sites
surveyed, and the large variation among them, this is not a
surprising result. The collection of new data from additional
sites could help improve our models and their validation
success. As with any system, field survey locations should
be strategically placed to encompass a broad range of
conditions and thus improve model predictive power. As
high-resolution imagery and derived vegetation maps
become more readily accessible for large, diverse areas
such as the San Francisco Bay, our approach should result
in increasingly robust, general models with greater direct
applicability.

Implications for Wetland Restoration and Monitoring

This study highlights the importance of high-resolution,
remotely-sensed vegetation data for monitoring natural and
restored tidal marshes, not just for vegetation, but also for
birds and potentially other wildlife (Phinn et al. 1996).
While remote sensing cannot replace on-the-ground mon-
itoring, it can improve its efficiency, especially for large
sites with limited accessibility. Aerial imagery and vegeta-
tion maps, through spatial predictive models, can be used to
extend the value of field survey data. Our results also
highlight the value of spectrally-derived metrics such as
NDVI and geomorphic (e.g., channel) metrics, which are
much easier to calculate than classified vegetation maps.
Our findings suggest that such variables may be better (and
cheaper) indicators for birds than specific plant information
from classified vegetation maps.

Finally, we should emphasize that it is important to
exercise caution in the extrapolation of models to new sites,
especially if conditions differ greatly from model-building
sites. Restoration monitoring is an adaptive process, whereby
new information should be continually incorporated as it
becomes available (Weinstein et al. 2001). A single model
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does not provide a conclusive answer, and should be treated
as a working hypothesis that can be iteratively refined.
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