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Mapping changes in tidal wetland vegetation composition
and pattern across a salinity gradient using high spatial
resolution imagery
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Abstract Detailed vegetation mapping of wetlands,

both natural and restored, can offer valuable infor-
mation about vegetation diversity and community

structure and provides the means for examining

vegetation change over time. We mapped vegetation
at six tidal marshes (two natural, four restored) in the

San Francisco Estuary, CA, USA, between 2003 and
2004 using detailed vegetation field surveys and high

spatial-resolution color-infrared aerial photography.

Vegetation classes were determined by performing
hierarchical agglomerative clustering on the field data

collected from each tidal marsh. Supervised classifi-

cation of the CIR photography resulted in vegetation
class mapping accuracies ranging from 70 to 92%;

10 out of 12 classification accuracies were above

80%, demonstrating the potential to map emergent
wetland vegetation. The number of vegetation classes

decreased with salinity, and increased with size and

age. In general, landscape diversity, as measured by
the Shannon’s diversity index, also decreased with

salinity, with an exception for the most saline site, a
newly restored marsh. Vegetation change between

years is evident, but the differences across sites in

composition and pattern were larger than change
within sites over two growing seasons.
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Introduction

Nearly half of the world’s wetlands have been diked,
drained, filled, or otherwise lost (Zedler and Kercher

2005), with an 80% loss in developed countries

(Pennings and Bertness 2001). Furthermore, much of
the remaining wetland area has been degraded by

human activities (Zedler and Kercher 2005).

Recently, there have been significant endeavors to
restore wetland habitat throughout the world (Zedler

and Kercher 2005), particularly within major estuar-

ies such as the San Francisco Estuary, where there is
the potential to restore large expanses of tidal marsh

(Williams and Faber 2001). Tidal marshes provide

multiple ecosystem services, habitat for endangered
species, flood-control benefits, and, under the right

conditions, can sequester carbon at high rates

(Chmura et al. 2003), providing a potential additional
economic incentive for restoration with the emer-

gence of global carbon markets.

Fine-scaled mapping of tidal marsh vegetation is
important to restoration efforts because it enables

vegetation inventory and change detection, which

informs overall habitat quality for numerous species
and other important processes like sedimentation.

Wetland vegetation classification using remote-sens-

ing imagery analysis can be challenging, however,
because of the high level of spectral confusion with

other land cover classes, among different types of

wetlands (Andresen et al. 2002; Ozesmi and Bauer
2002), and among different vegetation species (Oze-

smi and Bauer 2002; Ramsey and Laine 1997; Schmidt

and Skidmore 2003). Floristically-detailed mapping of
tidal marsh vegetation is especially challenging in

brackish marshes, which exhibit high levels of patch-

iness in plant species diversity and distribution.
The value of remote sensing for wetland monitor-

ing has long been recognized (Hinkle and Mitsch

2005; Phinn et al. 1996), and recent advancements
have made the methods and tools more applicable

and cost-effective. Automated (computer-assisted)

image analysis approaches allow for objective, con-
sistent, and repeatable results, making them more

scientifically defensible, especially across large, het-

erogeneous areas. The use of automated image
classification reduces inconsistencies and error intro-

duced through visual photo-interpretation of imagery.

For this reason, automated image classification across
multiple sites and time periods is more consistent and

cost-effective than visual delineation and classifica-
tion (Thomson et al. 2003).

Automated pixel-based classification methods are

typically unsupervised, supervised, or a hybrid of both
approaches. Unsupervised classification performs spec-

tral clustering without a priori input from the analyst.

Supervised classification is informed by ground refer-
ence field data as the analyst ‘‘trains’’ the classification

algorithm. Both types have been used successfully in

wetlands but there is no consensus regarding the best
method (Belluco et al. 2006; Thomson et al. 1998,

2003). Our study had detailed and abundant field data

collected to informmapping and vegetation analyses, so
we elected to use a supervised classification approach

with high spatial resolution color infrared digital

imagery to map dominant vegetation types.
Our overall goal was to characterize the range of

variation invegetationcomposition anddiversity among

sites and years and to demonstrate the accessibility of
remote sensing to restoration ecologists for monitoring

and assessment of marsh vegetation. Our specific

objective was to map tidal marsh vegetation in marshes
along a salinity gradient using high resolution (1-m

pixel) color infrared (CIR) imagery, and to examine

changes in vegetation composition and pattern over two
growing seasons. First, we separated each site into

vegetation, non-vegetation, and bare areas based on a

simple normalized difference vegetation index (NDVI)
threshold. Second, we used detailed, extensive, and

targeted field-based vegetation data to determine the

land cover classification scheme for each site so that it
corresponded to the floristic data at the site, and cross-

walkedwith alliances found in the CaliforniaManual of

Vegetation (Sawyer et al. 2009). We then used the field
data to train a supervised classification algorithm tomap

the landcover classes at each site across 2 years, and

assessed the accuracy of the resulting maps. Finally, we
calculated landscape metrics at both natural and restor-

ing tidal marshes over two growing periods.

Methods

Study sites

This research was performed as part of the Integrated

Regional Wetland Monitoring (IRWM) Pilot Project

(http://www.irwm.org/), a multi-investigator interdis-
ciplinary research project with the goal of evaluating
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how wetland restoration efforts throughout the San
Francisco Estuary, California, USA are affecting

ecosystem processes at different spatial and temporal

scales; and to prepare for subsequent longer-term
monitoring. The IRWM project vegetation compo-

nent focused on data collection between 2003 and

2004.
Our study sites were located in the Sacramento-

San Joaquin Delta and San Pablo Bay, within the

greater San Francisco Estuary (Fig. 1; hereafter
called the Estuary). The Estuary is comprised of

both natural and restored wetlands, as well as

potential restoration sites such as diked bayland
areas, former salt ponds, and seasonal and perennial

wetlands. Mean salinities across our study sites

ranged from approximately 15.40% at the western-
most study site to 0.17% at the easternmost site

(Table 1). The Estuary is one of the most modified

estuaries in the United States, with history of land and
water development and reclamation, over-fishing, and

waste disposal since 1850 (Nichols et al. 1986).

The six sites that we mapped were (from west to
east): Petaluma River Marsh (PRM) on the Petaluma

River; Pond 2A (P2A), Coon Island (CI), and Bull

Island (BuI) on the Napa River; and Browns Island
(BrI) and Sherman Lake (SL) in the western

Sacramento-San Joaquin River Delta (Fig. 1).
Browns Island and Sherman Lake are located at the

confluence of the Sacramento and San Joaquin

Rivers, a combined watershed of 257,000 km2, and
receive considerable freshwater input. These two

sites are oligohaline (i.e. characterized by low salinity

(0.5–5 ppt)). under most climate conditions but
during drought years can be subject to higher salinity

levels. Two of the six sites, Coon Island and Browns

Island, are mature marshes (a combination of ancient
and centennial marshland); the remaining four sites

were restored within the last 90 years (Table 1).

Study sites were chosen because they were represen-
tative of the dominant salinity gradient in the Estuary.

It is widely accepted that in coastal wetlands plant

species richness decreases with salinity due to salinity
and inundation-driven osmotic stresses; brackish and

freshwater tidal marshes are characterized by diverse

species mixtures due to reduced osmotic stresses
(Engels and Jensen 2009; Sharpe and Baldwin 2009).

These latter marshes usually are composed of several

co-dominant plant species with numerous sub-dom-
inant species and configured in a heterogeneous

mosaic of vegetation community types, often with

poorly defined boundaries between patch types. In the
Estuary, salt marshes have between 2 and 22 plant

Fig. 1 Study Site Vicinity.
The study sites, from west
to east, are Petaluma River
Marsh (PRM) on the
Petaluma River; Bull Island
(BuI), Coon Island (CI),
Pond 2A (P2A) on the Napa
River; and Browns Island
(BrI) and Sherman Lake
(SL) in the west Delta
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species, brackish marshes contain 27–65 species, and

freshwater marshes have upwards of 117 species

(Parker, unpublished data).
Among our study sites, dominant species composi-

tion was variable. Petaluma River Marsh is the most

saline marsh and consisted of four dominant species:
California cordgrass (Spartina foliosa Trin.), common

perennial pickleweed (Sarcocornia pacifica (Standl.)

A. J. Scott), annual pickleweed (Salicornia depressa
Standl.), and alkali bulrush (Bolboschoenus maritimus
Palla). The threeNapaRiver sites are brackishmarshes,

and consisted primarily of the same salt marsh species
with the addition of more salt-sensitive marsh species:

three-square common bulrush (Schoenoplectus amer-
icanus (Persoon) Volkart ex Schinz & R. Keller),
common tule (S. acutus var. occidentalis (Muhlenberg

ex Bigelow) Á. Löve & D. Löve), California tule/

bulrush (S. californicus (C. A. Mey.) Soják), and three
cattail species (Typha angustifolia L., T. domengensis
Persoon, and T. latifolia L.). Perennial pepperweed

(Lepidium latifolium Linn.) also exists at Coon, Bull,
and Browns Island sites. In the freshwater sites,

dominant vegetation consisted of S. americanus,
S. acutus, S. californicus, and all Typha species, with
the addition of alkali common reed (Phragmites
australis (Cav.) Trin. ex Steud.). Gumplant (Grindelia
stricta var. stricta (A.Gray)M.A. Lane) occurred at all
the study sites along channel margins, levees, and

upland areas.

Image acquisition and pre-processing

We used CIR aerial photography that was acquired
for all of the IRWM project sites in October of 2003

and August of 2004. Imagery was captured with a

Zeiss RMK Top 15 film camera, equipped with
forward motion compensation and a Pleogon A3/4

lens with 153 mm focal length. The imagery was

captured at the lowest possible tide in 2003 to aid

vegetation and geomorphic mapping; in 2004, imag-
ery was taken at mid-tide to aid channel delineation.

Mid-tide level had the advantage of helping delineate

channels because they had some water in them, but
the level was not high enough to flood the wetland

plane and subcanopy, and thus the vegetation clas-

sification should be comparable between years. This
image had three bands: near infrared, red, and green.

All sites were flown at a scale of 1:9,600 and the

hardcopy CIR photography was scanned at a resolu-
tion of 1,200 dots per inch (dpi), resulting in a pixel

size of 0.2-m for all sites. The only exception was

that in 2003 only, Petaluma River Marsh was flown
for use with another project and had a slightly

different flight scale (1:7,200). Imagery is available

for download at http://www.irwm.org/. The overall
goal was to achieve the same scale and pixel reso-

lution for all sites, regardless of site size, in order to

achieve uniform data for subsequent analyses. We
used digital photography for this project for two

reasons: first, we could control the time of image

acquisition; and second there is less problems with
atmospheric influence with aerial photography.

We utilized at least four Trimble GPS-located (sub-

meter accuracy) geospatial ground control points to
rectify each photo. These points generally were located

in different corners of each site, in order to maximize

the accuracy of the rectification process (Trimble Inc.
2005). The images were orthorectified and digital

elevationmodels (DEMs)were used in the rectification

process to account for the local terrain’s effect on
image distortion, using publicly available USGS 10-m

DEMs. The accuracy standards employed for ortho-

rectification were such that approximately 90% of all
control points on the photos were within two meters of

their corresponding ground coordinates.

Table 1 Summary of study site attributes

Study site Location Mean salinity (ppt) Tide range (m) Marsh type Status Year restored Size (ha)

PRM San Pablo Bay 15.40 1.44 Salt Restored 1994 19.4

P2A Napa River 12.28 1.32 Brackish Restored 1995 215.6

CI Napa River 11.88 1.53 Brackish Natural/mature Ancient and centennial 162.2

BuI Napa River 9.40 1.50 Brackish Restored 1950s 43.7

BrI Delta 1.84 0.97 Fresh Natural/mature Ancient 276.4

SL Delta 0.17 0.94 Fresh Restored 1920s 393.3
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In preparation for image analysis and metric
calculation, we re-sampled all the imagery from

0.2-m pixel size to 1-m pixel size. The images were

resampled to a coarser pixel size for three reasons.
First, the imagery contained high pixel variability that

is common with hyperspatial data, and we wanted to

reduce the amount of spurious pixels in the classifi-
cation output. Second, 1-m resolution was considered

appropriate for the development of avian habitat

models (Dechka et al. 2002; Stralberg et al. 2010).
Third, we wanted to enable better GIS computing

using the classification output, including the calcula-

tion of landscape pattern metrics.

Field data collection

We collected ground reference data to guide the

classification scheme, train the classification of the

imagery, and to assess the accuracy of the final maps.
Ground reference data points were stratified by

vegetation classes. In 2003, the field effort was

carried out in two phases. During the first phase, we
collected ground data for training the image classi-

fication using a supervised approach, in which a

classification algorithm assigns a class to each pixel
across using correlations between ground data and

image spectral properties (Justice and Townshend

1981). We collected data at points that were
randomly-generated in a Geographic Information

System (GIS) prior to field visits, and points were

chosen during the field visit at the discretion of the
field samplers to train the image classification more

effectively, especially for rare or underrepresented

communities. The randomly-generated points were
stratified across general vegetation groups that we

created prior to our field visit using a simple

unsupervised classification. We employed this step
to account for the limited prior knowledge of the

vegetation that occurred in the sites. Handheld

Garmin GPS units with an average recorded location
error of 5 m were used to navigate to each point.

During the second 2003 field phase, we collected data
at randomly-generated points to assess the accuracy

of the 2003 classified vegetation map. In 2004, we

conducted only one field phase that consisted of
accuracy assessment data collection at randomly-

generated points that were stratified along 2003

vegetation classes and area-weighted.

At all points visited during both years, the field

crew recorded absolute percent cover of all species
within a three-meter diameter circular plot. We chose

this plot size in order to accurately represent species

coverage based on observations of the average size
and distribution of tidal wetland plants in this region

and because these data were collected for purposes

other than vegetation mapping. Percent cover was
estimated using a seven-category modified Dauben-

mire ranking system (Daubenmire 1959). Species

composition and cover data have been used fre-
quently as indicators of ecosystem processes and are

a useful component of ecosystem classifications

(Mueller-Dombois and Ellenberg 1974). Between
50 and 300 plots were visited at each site in 2003 and

2004 (Table 2). Due to delicate conditions at some of

the sites, including soft sediments and bird nesting
territories, the field crew had the choice to observe

the plot from a few meters away. We used this

practice on less than 10% of the data points.

Image classification

Our classification involved several steps that are

outlined in Fig. 2. We performed all image classifi-

cation work with Leica Geosystem’s Erdas Imagine
software (Leica Geosystems Inc. 2006).

Vegetation classification scheme

The most important first step in image classification

is to choose or create a relevant classification scheme
that is ecologically meaningful and as unbiased as

possible (Jensen 2000). Many remote sensing map-

ping projects use a pre-defined classification scheme
(e.g. USGS Landcover scheme (Anderson et al.

Table 2 Field data summary

Study
site

Training points
(random/
non-random)

Random points
used for accuracy
assessment, 2003

Random points
used for accuracy
assessment, 2004

PRM 29/7 217 234

P2A 39/47 182 279

CI 27/43 206 236

BuI 24/43 160 296

BrI 24/30 151 272

SL 29/41 101 53
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1976)); but such course landcover schemes do not

capture the detailed and complex floristic patterns of
each site. Instead we matched our field data to the

alliance level listed in the Manual of California

Vegetation (Sawyer and Keeler-Wolf 2004; Sawyer
et al. 2009). The concept of the alliance is a

physiognomically uniform plant group with one or

more dominant/diagnostic species. We accomplished
this by using the field data from all the randomly-

generated points from both years, and performed an

agglomerative hierarchical clustering measure in
PC-ORD (McCune and Mefford 1999) for each site.

These kinds of cluster analyses partition

heterogeneous data into more manageable groups—

in our cases, classes that we could use in our
classification scheme. This algorithm builds a hierar-

chy of similar clusters from individual elements by

progressively merging clusters. The PC-ORD imple-
mentation also builds a distance matrix that shows

how different the clusters are from each other using a

user defined distance criteria. Ward’s linkage method
and Euclidean distance were used as a group linkage

method and a distance measure, respectively. The

resulting dendrograms were scaled using Wishart’s
objective function, which measures loss of informa-

tion at each step of cluster formation (McCune and

Fig. 2 Image analysis and classification process. NDVI is Normalized Difference Vegetation Index

Wetlands Ecol Manage

123



Mefford 1999). We used a subjective criterion for
pruning the dendrograms so that the resulting classes

chosen matched an alliance in the Manual of

California Vegetation. One species, perennial pepper-
weed, was not one of the primary groups from the

hierarchical clustering but was added to the classifi-

cation scheme because it was considered a target
monitoring species due to its invasiveness in Estuary

marshes (Grossinger et al. 1998). Although we were

primarily concerned with wetland plants, we also
mapped floating aquatic vegetation and upland spe-

cies. We did this to be comprehensive in our mapping,

and to make sure that we could use all the field data
collected.

Separation of vegetated and non-vegetated areas

Vegetated and non-vegetated areas were separated

first using Normalized Difference Vegetation Index
(NDVI), which was calculated for each raw 3-band

image using the red and NIR bands. Many studies

have used vegetation indices to aid in wetland
vegetation mapping (Eastwood et al. 1997; Thomson

et al. 2004; Zhang et al. 1997). NDVI is considered

an effective way to indicate presence of vegetation
(Tuxen et al. 2008), as it is usually highly correlated

with green leaf biomass and green leaf area index and

is often considered to be a proxy for primary
production (Hardisky et al. 1983, 1984; Jensen

2000, Jensen et al. 1998, 2002). The vegetated class

included all the wetland areas, as well as the
vegetated upland areas. The non-vegetated areas

were masked out of the dataset to render the raw

imagery for areas with vegetation only (Fig. 2).

Step 3: Supervised classification of individual
species

All vegetated pixels were then classified into detailed

vegetation classes using a supervised classification
approach. We first reclassed the plot data according to

the dominant vegetation type in each plot. This was
necessary in order to simplify and reduce the number

of potential vegetation classifications, since many

field plots had up to 12 species recorded in them. We
considered each plot to belong to a certain vegetation

class if that class occupied more than 50% of its area.

These dominance-based plot data were used as
training sets for the maximum likelihood classifier.

Training pixels were created using the ‘‘seed pixel’’

approach, where a pixel chosen at the center of a
relatively homogenous feature and whose spectral

properties are compared to its neighboring pixels.

Given enough similarity between neighboring pixels,
a training region, or ‘‘signature,’’ expands in the

direction of spectrally similar pixels. The appropriate

vegetation class was then assigned to each signature.
We examined the spectral separability for all classes

using a transformed divergence measure, a common

index of signature separability (ERDAS 1999). The
separability analysis was necessary in order to verify

that the signatures for different classes were not too

spectrally similar so as to produce errors in the
classification output. Transformed divergence ranges

from 0 to 2,000, and is easy to interpret because any

value under 1,700 indicates poor separation between
signatures (ERDAS 1999). If any confusion existed in

the separability analysis, signatures were added or

removed to allow for better representation of the
classes in the spectral signatures. When adequate

signatures were finalized (i.e. the separation analysis

was satisfactory), each vegetation group image was
classified using the Maximum Likelihood Classifier

(MLC). Finally, all vegetation groups were combined

together with the non-vegetated areas, to create the
vegetation map for each site for each of the 2 years.

Mosaicking images

All but two sites had more than one image tile (i.e.

more than one image to make up the entire site), and
for several sites, the different tiles had varying

airplane tilt, causing brightness gradients from one

side of the tile to the other (Devereux et al. 1990) that
were impossible to remove completely using standard

radiometric corrections such as illumination correc-

tion. Since images were not color-matched during
mosaicking, some seams were extremely noticeable

and would have caused abrupt spectral changes,
causing false vegetation classification. Therefore, for

all sites with more than one image tile, each tile was

classified separately, and then mosaicked before
accuracy assessment using the mosaic function in

Erdas Imagine (Leica Geosystems Inc. 2006).
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Spatial filtering of spurious pixel effect

The vegetation map was filtered to smooth out the
speckled effect inherent and ubiquitous with all pixel-

based classifications (Blaschke and Strobl 2001). This

is apparent especially in fine-scaled data and can
include shadows of leaves and plants, patches with

highly mixed species, and differences in reflectance

values on the same species caused by different
reflectance angles off of leaves (Jensen 2000). The

smoothing technique used was an elimination filter, a

function that allows for the specification of a
minimum ‘‘clump,’’ or patch of pixels of a certain

number or area, and clumps smaller than the mini-

mum are filled in from their neighboring large clumps
in an iterative fashion until all small patches are

accounted for. The minimum clump size used was

four pixels, resulting in a minimum mapping unit
(MMU) of approximately four square-meters, an

adequate size to capture the patchy and heteroge-

neous nature of Pacific coast wetlands (Phinn et al.
1996).

Accuracy assessment

We performed an accuracy assessment for each map

by comparing field data to classified data; all field
data used in accuracy assessment had not been used

for classification training. For each ground point, the

field-based dominant vegetation type was compared
to the mapped dominant vegetation type in order to

assess accuracy. Since each 3-m-diameter plot often

contained a mixture of mapped species, we used the
thematic mapped class with the majority of pixels

that fell inside plot as the mapped class for that point.

Standard remote sensing accuracy measures, includ-
ing the overall accuracy and errors of omission and

commission for each class at each site for each year

were calculated using the error matrix method
(Congalton and Green 1999; Congalton 2009).

Metrics calculation

We calculated site-level diversity metrics as a way to

characterize differences amongst sites and between
years. We used FRAGSTATS 3.3 (McGarigal et al.

2002) to calculate the percent of landscape for each

vegetation class, as well as site-wide (landscape)
metrics: Shannon’s Diversity Index and Shannon’s

Evenness Index. Shannon’s Diversity measures land-

scape (vegetation class) diversity; it equals zero when
the landscape contains only one vegetation class, and

increases as the number of different vegetation

classes increases and/or the proportional distribution
of area among vegetation classes becomes more

equitable. Shannon’s Evenness measures landscape

evenness; it equals zero when the landscape contains
only one vegetation class and approaches one as the

distribution of area among the different vegetation

classes becomes increasingly uneven (McGarigal
et al. 2002).

To understand the similarity of vegetation cover

across sites and between years, we calculated a Bray-
Curtis dissimilarity metric (Faith et al. 1987) for each

site/year combination, using the percent cover of each

vegetation type for each site and each year. The Bray
Curtis dissimilarity is a statistic used to quantify the

compositional dissimilarity between two different sites.

It is equivalent to the total number of species that are
unique to any one of the two sites divided by the total

number of species over the two sites. The metrics were

calculated using the ‘vegan’ package, version 1.3 (J.
Oksanen) for R (R_Development_Core_Team 2005).

We did not perform a traditional change detection

in this project for two main reasons. First, conven-
tional change detection products, such as a land cover

transition matrix, are usually performed on larger

scale classifications; our fine scale would result in
unwieldy transition matrix. In addition, we are mostly

interested in overall changes in land cover class and

particularly in overall pattern changes.

Results

Hierarchical clustering

We used hierarchical clustering of all field data to

develop our classification scheme by site. The hierar-
chical dendrogram output for PRM is shown in Fig. 3,

and is a typical output from PC-Ord’s hierarchical

agglomerative clustering routine. The vertical dashed
line indicates the pruning point on the tree, which

resulted in five classes in this case. These five classes

were used to train a supervised classification algorithm
to map the marsh vegetation. For each additional site,
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we repeated this analysis, finding the dominant vege-
tation classes to serve as landcover classes in our

remote sensing process. The complete analysis yielded

many additional vegetation classes (Table 4).

Classification results

Map accuracies ranged from 69.8 to 91.5% (Table 3).

The two largest sites, BrI and SL, were the most

problematic to accurately classify. The remaining
sites were all classified with over 80% accuracy in

both years. Of the individual vegetation classes, the

most consistently accurately classified was the peren-
nial pickleweed, although there was some confusion

with annual pickleweed at some sites; the most

problematic classes were the bulrush, cattail and reed
classes, which had overlap.

Our classification shows some vegetation change

between 2003 and 2004 in each of the six sites. PRM
and BuI, for example, shows clear growth in pickle-

weed along channel margins. On the larger sites (BrI

and SL), this change is largely on the marsh plain,

and is likely accounted for by classification confusion
between some of the more spectrally similar classes

mentioned above (Figs. 4 and 5).

We examined each site’s vegetation composition
and the trends in vegetation composition across site

age, size and salinity, and time. The sites were

increasingly diverse (in terms of number of vegetation
classes) as site salinity decreased, site size increased,

and with age; salinity accounts for the strongest trend

Fig. 3 Cluster analysis dendrogram used for the creation of
the classification scheme for Petaluma River Marsh. This is one
of six dendrograms created with hierarchical agglomerative
clustering using PC-ORD to create classification schemes for

the vegetation maps for 2003 and 2004. The vertical dashed
line indicates the area where tree was pruned to show which
groups or classes should be used for the classification scheme

Table 3 Summary of accuracy evaluation for each year

Site and year Overall accuracy (%)

2003 2004

PRM 83.9 91.5

P2A 84.3 85.7

CI 85.4 86.8

BuI 91.1 84.7

BrI 77.8 82.0

SL 82.0 69.8
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(Table 4). Many of the common brackish marsh

vegetation types were mapped at almost all of the sites
(including cattail, common perennial pickleweed, and

bulrush) but no vegetation class was present at all six

sites. Some vegetation types were mapped at only one
or two sites, such as annual pickleweed at the most

saline site (PRM) and alkali common reed, saltgrass,

and floating aquatic vegetation at the two freshest sites
(BrI and SL).

The common perennial pickleweed class

increased the most in cover between years at four
of the six sites (BuI, CI, PRM and P2A), with a

corresponding decrease in mudflat at two of these

sites, PRM and P2A—both young, restored sites,

although the difference in tide stage between the
respective images needs to be considered. At sites

CI and BuI, the increase in common perennial

pickleweed likely occurred at the expense of alkali
bulrush; at PRM this expansion likely was offset by

losses in alkali bulrush and mudflat, reflecting the

colonization of pickleweed onto bare ground fol-
lowing restoration (Tuxen et al. 2008). At the

freshest site, SL, there was a change in the cover of

some of the fresh water vegetation classes: a
decrease in bulrush and three-square and an increase

in alkali common reed.

Fig. 4 Vegetation maps for
Petaluma River Marsh
(PRM), Bull Island (BuI),
and Coon Island (CI) for
2003 (left image) and 2004
(right image). Locations of
each site are found in
Fig. 1. Petulama River
Marsh is the most saline
site; Bull Island and Coon
are brackish
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Diversity metrics

In both years, landscape diversity, as measured by
Shannon’s Diversity, was slightly greater at fresher,

larger sites, but this was not a strong trend. PRM was

an exception; the smallest, most saline site had as
diverse a landscape as the two large, fresh sites.

Browns Island, a large, old, mature marsh, had the

highest vegetation landscape diversity in both years.
These results were the opposite for landscape

Fig. 5 Vegetation maps for Browns Island (BrI), Pond 2A (P2A), and Sherman Lake (SL) for 2003 (left image) and 2004 (right
image). Locations of each site are found in Fig. 1. Brown Island and Sherman are the largest and freshest sites; Pond 2A is brackish
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evenness, which generally declined with age, salinity

and size.
Based on Bray-Curtis dissimilarity metrics, differ-

ences among sites were much greater than differences

between years within the same site (Table 5), but
there was no clear relationship between site dynamics

and salinity, size or age. Restoration sites yielded

both the highest (PRM) and lowest (P2A) change
(dissimilarity metric) between years. The most sim-

ilar sites, BuI, CI, and P2A, are all brackish marshes

that vary in size and age. The most saline site, PRM,
was most different from all other sites.

Discussion

Mapping wetlands with high spatial resolution

imagery

Using high spatial resolution multispectral imagery,

we were successful in producing detailed vegetation
maps of both restored and natural wetlands that had

varying levels of salinity and vegetation heterogene-

ity and composition. Field calibration and validation
of vegetation maps was necessary to increase map-

ping detail and accuracy. Pixel-based methods

Table 4 Vegetation classes (in percent) and site-level diversity metrics (unitless measures) for each site

2003 2004

PRM P2A CI BuI BrI SL PRM P2A CI BuI BrI SL

Class

Annual pickleweed (Salicornia depressa) 32.2 35.7

Alkali bulrush (Bolboschoenus maritimus) 18.4 69.0 54.4 40.4 10.4 60.7 39.3 30.6

California cordgrass (Spartina foliosa) 6.5 8.1 1.7 0.2 7.8 8.3 1.0 0.0

Common perennial pickleweed
(Sarcocornia pacifica)—high marsh (e.g.,
Distichlis spicata, Jaumea carnosa, Juncus
balticus)

5.5 5.8 28.7 10.5 18.2 16.1 12.9 46.0 18.6 13.7

Upland mix (Baccharis pilularis, Grindelia
stricta v. stricta, Lepidium latifolium)

9.8 0.9 4.6 7.5 0.3 1.3

Cattail (Typha spp. combined) 2.4 6.8 22.5 9.5 9.8 1.7 6.8 27.9 14.7 9.2

Bulrush (Schoenoplectus acutus var.
occidentalis, S. californicus)

0.4 1.6 5.8 11.4 51.3 1.4 7.9 18.4 46.6

Common Three-square (Schoenoplectus
americanus)

0.3 2.3 48.6 16.6 0.4 1.6 39.9 7.5

Gumplant (G. stricta v. stricta) 0.8 1.1 1.0 0.7

Perennial pepperweed (L. latifolium) 1.0 3.7 0.5 0.1 0.7 2.6 0.1 0.3

Alkali common reed (Phragmites australis) 0.3 4.7 1.0 18.5

Himalayan Blackberry brambles (Rubus
discolor, Rosa californica)

2.1 0.3 2.5 1.5

Saltgrass mix (D. spicata, L., Foeniculum
vulgare)

0.8 6.7 0.4 6.2

Floating aquatic vegetation (e.g.
Hydrocotyle spp., Eichhornia spp.)

1.9 2.8 2.2 5.1

Riparian forest and woodland (Salix spp.,
Acacia spp.)

0.8 0.4

Levee 0.4 1.2

Bare 24.5 6.3 12.0 2.9

Water 3.3 6.9 4.8 10.3 5.9 6.6 10.4 11.0 4.5 9.4 6.6 4.4

Diversity metrics

Shannon’s diversity index 1.66 1.34 1.52 1.30 1.70 1.66 1.47 1.43 1.34 1.60 1.69 1.57

Shannon’s evenness index 0.80 0.58 0.69 0.56 0.68 0.69 0.71 0.62 0.58 0.70 0.68 0.66

PRM Petaluma River Marsh, BuI Bull Island, CI Coon Island, P2A Pond 2A, BrI Browns Island, SL Sherman Lake
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applied in detailed vegetation type mapping are
effective at measuring large-scale pattern change,

including site-wide richness, diversity, and evenness.

These methods can face challenges when mapping
small-scale vegetation changes, particularly when the

time interval between measurements is short. This

might suggest that vegetation mapping with this level
of detail should take place less frequently than

annually, and for a longer duration than two time

periods. This limitation is largely due to spectral
similarity between tidal marsh species assemblages in

the spectral bands available to us. Although high

spatial resolution imagery is necessary for detailed
mapping, a per-pixel classification approach is lim-

iting because of high local-scale spectral variability

of the pixels, and the inability of most pixel-based
algorithms to take spatial and contextual information

into account in the classification. Where only a few

species comprise a relatively homogeneous patch
mosaic, CIR imagery is effective and relatively

straightforward. However, for sites with small-scale

diversity, using high spatial resolution CIR imagery
requires different types of classification algorithms

such as object based image analysis, or hyperspectral
data with a high spatial resolution (Blaschke 2010).

These alternate approaches may increase success of

discriminating within-patch species.

Map accuracy

The overall vegetation map accuracy increased from

2003 to 2004 at four out of six sites. Additional

ground reference points and acquiring imagery with
better spectral separation between vegetation types

could explain this increase (2004 imagery was

acquired at a later date for these two sites than in
2003—October rather than August/September). Laba

et al. (2005) found, in contrast, that wetland vegeta-

tion community types could be distinguished best
with imagery acquired in August for measuring peak

biomass. Our accuracy rates for October 2003

imagery are less than 80% are likely are due to the
underrepresentation of some classes in the field data

due to their small area or habitat conditions that made

field ground-truthing more difficult.

Table 5 Similarity of vegetation type changes between sites and years sites, as measure by the Bray-Curtis Dissimilarity Metric
(high values indicate high differences)

2003 2004

PRM
2003

P2A
2003

CI
2003

BuI
2003

BrI
2003

SL
2003

PRM
2004

P2A
2004

CI
2004

BuI
2004

BrI
2004

SL
2004

2003

PRM 2003 0.00 0.60 0.70 0.68 0.91 0.97 0.22

P2A 2003 0.60 0.00 0.31 0.45 0.86 0.90 0.12

CI 2003 0.70 0.31 0.00 0.35 0.68 0.87 0.18

BuI 2003 0.68 0.45 0.35 0.00 0.64 0.75 0.15

BrI 2003 0.91 0.86 0.68 0.64 0.00 0.53 0.15

SL 2003 0.97 0.90 0.87 0.75 0.53 0.00 0.18

2004

PRM 2004 0.22 0.00 0.56 0.68 0.64 0.79 0.96

P2A 2004 0.12 0.56 0.00 0.40 0.45 0.78 0.93

CI 2004 0.18 0.68 0.40 0.00 0.38 0.75 0.90

BuI 2004 0.15 0.64 0.45 0.38 0.00 0.54 0.77

BrI 2004 0.15 0.79 0.78 0.75 0.54 0.00 0.56

SL 2004 0.18 0.96 0.93 0.90 0.77 0.56 0.00

The top half of the table shows the dissimilarity metric between sites in 2003 on the left, and differences between 2003 and 2004 on
the right. The bottom half shows the dissimilarity metric between sites in 2004 on the right, with a repeat of the differences between
2003 and 2004 on the left

PRM Petaluma River Marsh, BuI Bull Island, CI Coon Island, P2A Pond 2A, BrI Browns Island, SL Sherman Lake. Within-site,
between-year dissimilarity metrics are shown in bold
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Though the classification approach used effectively
mappedmarsh vegetation types, each tile was processed

individually, which produced considerable work due to

the idiosyncrasies of each individual image (e.g.,
brightness gradients). We recommend acquiring imag-

ery for a site that incorporates as few tiles as possible

(preferably one tile), while still being able to achieve the
desired pixel size for mapping. Modern high resolution

scanners can help achieve this goal by enlarging the

footprint for each photo tile. This practice will reduce
processing time and image problems due to mosaicking

seams. If a larger spatial extent needed processing,

which requires numerous photograph tiles to capture the
entire area, supervised or unsupervised methods may

not be possible, and visual interpretation, albeit time-

consuming, may produce the most accurate results
(Zharikov et al. 2005).

Certain vegetation classes were identified with low

accuracy, indicating high commission and omission
errors. Shrub species, including both gumplant and

coyote brush, usually existed as one or two plants,

creating very small patches that were either too small
for the one-meter pixel size to detect, or were

eliminated using the filtering technique for smoothing

out the speckled effect. Both of these species often
existed on levees and in upland areas, so they were

incorporated into an ‘‘upland’’ class.

Diversity metrics

Vegetation pattern in tidally influenced marshes
responds to the interaction between hydrodynamics

and elevation, and can present clear zonation in

vegetation type, local-scale variations in microtopog-
raphy (and hence inundation), which can create more

complex vegetation patterns (Hickey and Bruce 2010,

Pratolongo et al. 2009). But pattern is more difficult
to quantify than diversity, thus there are fewer studies

examining pattern and structural differences across

salinity gradients, or across time. Engles and Jensen
(2009) looked at wetlands across salinity gradients

along the Elbe (Germany), and the Connecticut
(USA) Rivers, and found clear differences in pattern

as expressed by Shannon’s Diversity and Evenness

metrics.
We measured overall vegetation similarity

between sites and years with the Bray-Curtis index

(Table 5). In Table 5, we are comparing each site’s
vegetation with all the other sites’ vegetation in the

same year (e.g. PRM 2003 with P2A 2003), and each
site’s vegetation in 2003 with its vegetation in 2004

(e.g. PRM 2003 with PRM 2004). The higher Bray-

Curtis score indicates large differences, either
between sites, or across years. In our study, overall

vegetation similarity, showed small differences

between years for any given site, compared to the
large differences observed between sites in a given

year. Salinity seemed to play a role in this: across

sites, the most similar sites were those that are
geographically close and have similar salinities,

illustrating the effect of position along the estuarine

salinity gradient.
Changes in wetland vegetation pattern over time,

especially in restored wetland sites, are also not

straightforward. In many cases, species diversity and
dominance patterns do not match those of natural

sites, even decades after restoration (Garbutt and

Wolters 2008). In the long term, disturbance (both
chronic and extreme) will change wetland vegetation

pattern (Byrd and Kelly 2006; Byrd et al. 2004;

Frieswyk and Zedler 2007; Zedler 2009), in many
cases shifting toward fewer species and increased

dominance. In our study, site-level diversity metrics

demonstrated several important differences across
sites and between years that are detailed in the next

sections. Though these metrics may highlight actual

change in vegetation type, it is also possible that any
changes in a two-year study, such as this one, are

depicting annual variability and do not indicate long-

term trends. These metrics are effective at measuring
differences from year to year and, used over the long

term as a monitoring technique, can allow for land

cover change quantification and ultimately the mea-
surement of restoration success.

A recently restored marsh (PRM) ranked as high or

higher than mature marshes in vegetation class
diversity and number of patches in both years

(Shannon’s diversity of 1.66 and 1.47 respectively),

in contrast to the relatively low plant species diversity
at this high-salinity site (Callaway et al. 2007). In

other words, the recently restored site had a more
complex vegetation patch structure than a more

mature marsh. At least at this site, we suggest that

processes of vegetation colonization produce a more
complex vegetation structure in the early period after

restoration and that over longer time periods this

structure simplifies, due to hydrologic and salinity
patterns, or other factors such as competition.
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Bull Island, a restored site, had variable diversity
and evenness between years, while other more

recently restored sites (PRM and P2A) were less

variable (Table 5). This finding could reflect an
actual true increase in vegetation type diversity at

BuI, or the fact that the earlier image acquisition in

2004 (August 2004 vs. October 2003) allowed for
better separation of the vegetation types. These

results emphasize the importance of performing these

measures consistently over many years to measure
long-term changes through the marsh’s restoration, in

order to notice long-term changes that could be lost

due to interannual variability.
The three oldest sites, two mature marshes (BrI, CI)

and one 83-year old restoration site (SL), exhibited very

small changes in vegetation class diversity, evenness,
and patch density. This finding was expected, as these

mature sites should not show as much change (i.e.,

colonization and succession) as the recently restored
sites. For example, at PRM, the large increase of the

perennial pickleweed compared to the smaller increase

in the early-colonizing annual pickleweed reflects
marsh maturation as more sediment accumulates and

elevation increases at the site.

Conclusions

Based on the findings of this study, we have several

recommendations for applying this kind of vegetation

mapping method. First, images should be collected at
the same time of year when conducting multi-year

evaluations to reduce variability introduced by

growing season spectral variability. Third, except at
locations undergoing very rapid vegetation changes

(newly restored sites), intervals between mapping

should be greater than 1 year in order to capture
actual vegetation changes rather than method vari-

ability. Two consecutive years of image acquisition

and analysis might not be sufficient to show
substantial vegetation change with both natural and

restoring sites. Fourth, avoiding the need for multiple
image tiles through higher altitude image acquisition

and higher resolution scanning improves mapping

results and reduces mapping effort. Sixth, it is
beneficial to have ample field data for use in both

training image processing software and in validating

classification results. With these guidelines, there is

potential value to mapping restored wetlands sites
using high resolution imagery over the long term.
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